V.B.S PURVANCHAL UNIVERSITY
JAUNPUR

SYLLABUS

B.Tech THIRD and FOURTH YEAR

(Semester V, VI, VII and VIII)

Computer Science & Engineering

Effective from session 2010-11
B.Tech

Study and Evaluation Scheme
Effective from session 2010-11

Computer Science & Engineering
Year-III, Semester V

<table>
<thead>
<tr>
<th>SNo</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EHU-501</td>
<td>Engineering & Managerial Economics</td>
<td>3-1-0</td>
<td>30 20 50</td>
<td>100 150</td>
</tr>
<tr>
<td>2</td>
<td>ECS-501</td>
<td>Operating System</td>
<td>3-1-0</td>
<td>30 20 50</td>
<td>100 150</td>
</tr>
<tr>
<td>3</td>
<td>ECS-502</td>
<td>Design and Analysis of Algorithms</td>
<td>3-1-0</td>
<td>30 20 50</td>
<td>100 150</td>
</tr>
<tr>
<td>4</td>
<td>ECS-503</td>
<td>Object Oriented Techniques</td>
<td>3-1-0</td>
<td>30 20 50</td>
<td>100 150</td>
</tr>
<tr>
<td>5</td>
<td>ECS-504</td>
<td>Computer Graphics</td>
<td>2-1-0</td>
<td>15 10 25</td>
<td>50 75</td>
</tr>
<tr>
<td>6</td>
<td>ECS-505</td>
<td>Graph Theory</td>
<td>2-1-0</td>
<td>15 10 25</td>
<td>50 75</td>
</tr>
</tbody>
</table>

Practicals / Training /Projects

<table>
<thead>
<tr>
<th>SNo</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ECS-551</td>
<td>Operating System Lab*</td>
<td>0-0-2</td>
<td>- 25 25</td>
<td>25 50</td>
</tr>
<tr>
<td>8</td>
<td>ECS-552</td>
<td>Algorithms Lab*</td>
<td>0-0-2</td>
<td>- 25 25</td>
<td>25 50</td>
</tr>
<tr>
<td>9</td>
<td>ECS-553</td>
<td>Object Oriented Techniques Lab*</td>
<td>0-0-2</td>
<td>- 25 25</td>
<td>25 50</td>
</tr>
<tr>
<td>10</td>
<td>ECS-554</td>
<td>Computer Graphics Lab*</td>
<td>0-0-2</td>
<td>- 25 25</td>
<td>25 50</td>
</tr>
<tr>
<td>11</td>
<td>GP-501</td>
<td>General Proficiency</td>
<td>-</td>
<td>- - -</td>
<td>- 50</td>
</tr>
</tbody>
</table>

* At least 10 problems are to be considered based on corresponding theory course.
B.Tech

Study and Evaluation Scheme
Effective from session 2010-11

Computer Science & Engineering
Year-III, Semester VI

<table>
<thead>
<tr>
<th>SNo</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
</tr>
<tr>
<td>1</td>
<td>EHU-601</td>
<td>Industrial Management</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>ECS-601</td>
<td>Computer Network</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>ECS-602</td>
<td>Software Engineering</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>ECS-603</td>
<td>Compiler Design</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>ECS-604</td>
<td>Web Technology</td>
<td>2-1-0</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>EIT-505</td>
<td>Information Security and Cyber Laws</td>
<td>2-1-0</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Practicals / Training / Projects

<table>
<thead>
<tr>
<th>SNo</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ECS-651</td>
<td>Computer Network Lab*</td>
<td>0-0-2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>ECS-652</td>
<td>Web Technology based Software Engineering Lab*</td>
<td>0-0-2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>ECS-653</td>
<td>Compiler Lab*</td>
<td>0-0-2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>ECS-654</td>
<td>Seminar</td>
<td>0-0-2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>GP-601</td>
<td>General Proficiency</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* At least 10 problems are to be considered based on corresponding theory course.
B.Tech

Study and Evaluation Scheme
Effective from session 2010-11

Computer Science & Engineering
Year-IV, Semester VII

<table>
<thead>
<tr>
<th>SNo</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
</tr>
<tr>
<td>1</td>
<td>EOE-071-EOE-074</td>
<td>Open Elective-I</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>ECS-701</td>
<td>Distributed Systems</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>ECS-702</td>
<td>Digital Image</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>CS-Elective-I</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>CS-Elective-II</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

Practicals / Training /Projects

<table>
<thead>
<tr>
<th>SNo</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ECS-751</td>
<td>Distributed Systems Lab*</td>
<td>0-0-2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>ECS-752</td>
<td>Digital Image Processing Lab*</td>
<td>0-0-2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>ECS-753</td>
<td>Project</td>
<td>0-0-4</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>ECS-754</td>
<td>Industrial Training Viva-Voce</td>
<td>0-0-2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>GP-701</td>
<td>General Proficiency</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

At least 10 problems are to be considered based on corresponding theory course.
B.Tech

Study and Evaluation Scheme
Effective from session 2010-11

Computer Science & Engineering
Year-IV, Semester VIII

<table>
<thead>
<tr>
<th>SNo</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sessional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
</tr>
<tr>
<td>1</td>
<td>EOE-081-EOE-084</td>
<td>Open Elective-II</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>ECS-801</td>
<td>Artificial Intelligence</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>CS-Elective-III</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>CS-Elective-IV</td>
<td>3-1-0</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

Practicals / Training /Projects

<table>
<thead>
<tr>
<th></th>
<th>Subject Code</th>
<th>Subject</th>
<th>Period</th>
<th>Evaluation Scheme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ECS-851</td>
<td>Artificial Intelligence Lab*</td>
<td>0-0-2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>ECS-852</td>
<td>Project</td>
<td>0-0-12</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>GP-801</td>
<td>General Proficiency</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:
1. Practical Training done after 6th Semester would be evaluated in 7th semester through Report and Viva-voce.
2. Project has to be initiated in 7th semester beginning and completed by the end of 8th semester with proper report and demonstration.
 * At least 10 problems are to be considered based on corresponding theory course.
List of Electives for B.Tech (Computer Science & Engineering)

<table>
<thead>
<tr>
<th>CS-Elective-I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS-071</td>
<td>Computational Geometry</td>
</tr>
<tr>
<td>ECS-072</td>
<td>Computational Complexity</td>
</tr>
<tr>
<td>ECS-073</td>
<td>Parallel Algorithms</td>
</tr>
<tr>
<td>ECS-074</td>
<td>Pattern Recognition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS-Elective-II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS-075</td>
<td>Data Mining & Data Warehousing</td>
</tr>
<tr>
<td>ECS-076</td>
<td>Distributed Database</td>
</tr>
<tr>
<td>EIT-073</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>ECS-077</td>
<td>Data Compression</td>
</tr>
<tr>
<td>EIT-074</td>
<td>IT in Forensic Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS-Elective-III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS-081</td>
<td>Real Time System</td>
</tr>
<tr>
<td>ECS-082</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>ECS-083</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>ECS-084</td>
<td>Cryptography & Network Security</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS-Elective-IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS-085</td>
<td>Neural Networks</td>
</tr>
<tr>
<td>ECS-086</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>ECS-087</td>
<td>Mobile Computing</td>
</tr>
<tr>
<td>*ECS-088</td>
<td>Soft Computing</td>
</tr>
</tbody>
</table>

Note: ECS-088 may be opted by only those students who didn’t opt EOE-041 as an open elective
SYLLABUS
(Computer Science & Engineering and Information Technology)

ECS-501: Operating System

Unit – I

Unit – II

Unit – III

Unit – IV
Memory Management: Basic bare machine, Resident monitor, Multiprogramming with fixed partitions, Multiprogramming with variable partitions, Protection schemes, Paging, Segmentation, Paged segmentation, Virtual memory concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing, Cache memory organization, Locality of reference.

Unit – V
I/O Management and Disk Scheduling: I/O devices, and I/O subsystems, I/O buffering, Disk storage and disk scheduling, RAID. File System: File concept, File organization and access mechanism, File directories, and File sharing, File system implementation issues, File system protection and security.

References:
3. Harvey M Dietel, “An Introduction to Operating System”, Pearson Education
ECS-502: Design and Analysis of Algorithms

Unit-I

Unit -II

Unit - III
Divide and Conquer with examples such as Sorting, Matrix Multiplication, Convex hull and Searching.
Greedy methods with examples such as Optimal Reliability Allocation, Knapsack, Minimum Spanning trees – Prim’s and Kruskal’s algorithms, Single source shortest paths - Dijkstra’s and Bellman Ford algorithms.

Unit - IV
Dynamic programming with examples such as Kanpsack, All pair shortest paths – Warshall’s and Floyd’s algorithms, Resource allocation problem.
Backtracking, Branch and Bound with examples such as Travelling Salesman Problem, Graph Coloring, n-Queen Problem, Hamiltonian Cycles and Sum of subsets.

Unit - V

References:
ECS-503: Object Oriented Techniques

UNIT I

UNIT II

Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams.

UNIT III
Object Oriented Analysis, Object oriented design, Object design, Combining three models, Designing algorithms, design optimization, Implementation of control, Adjustment of inheritance, Object representation, Physical packaging, Documenting design considerations. Structured analysis and structured design (SA/SD), Jackson Structured Development (JSD). Mapping object oriented concepts using non-object oriented language, Translating classes into data structures, Passing arguments to methods, Implementing inheritance, associations encapsulation.

UNIT IV
Introduction to Java, History, Features, Object Oriented concept of Java, Classes and Objects, Inheritance, Packages, Interface, abstract method and classes, Polymorphism, Inner classes, String Handling, I/O, Networking, Event Handling, Multi threading, Collection, Java APIs, Java Beans: Application Builder tools, The bean developer kit(BDK), JAR files, Introspection, Developing a simple bean, using Bound properties, The Java Beans API, Session Beans, Entity Beans, Introduction to Enterprise Java beans (EJB).

UNIT V
References:
4. Mark Priestley “Practical Object-Oriented Design with UML”, TMH
5. Booch, Maksimchuk, Engle, Young, Conallen and Houston, “Object Oriented Analysis and Design with Applications”, Pearson Education

ECS-504: Computer Graphics

Unit – I
Introduction and Line Generation: Types of computer graphics, Graphic Displays- Random scan displays, Raster scan displays, Frame buffer and video controller, Points and lines, Line drawing algorithms, Circle generating algorithms, Mid point circle generating algorithm, and parallel version of these algorithms.

Unit – II
Transformations: Basic transformation, Matrix representations and homogenous coordinates, Composite transformations, Reflections and shearing.

Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms-Line clipping algorithms such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping.

Unit – III
Three Dimensional: 3-D geometric primitives, 3-D Object representation, 3-D Transformation, 3-D viewing, projections, 3-D Clipping.

Unit – IV
Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Bspline and Bezier curves and surfaces.

References:

ECS-505: Graph Theory

Unit -I
Graphs, Sub graphs, some basic properties, various example of graphs & their sub graphs, walks, path & circuits, connected graphs, disconnected graphs and component, euler graphs, various operation on graphs, Hamiltonian paths and circuits, the traveling sales man problem.

Unit- II
Trees and fundamental circuits, distance diameters, radius and pendent vertices, rooted and binary trees, on counting trees, spanning trees, fundamental circuits, finding all spanning trees of a graph and a weighted graph, algorithms of primes, Kruskal and Dijkstra Algorithms.

Unit -III
Cuts sets and cut vertices, some properties, all cut sets in a graph, fundamental circuits and cut sets , connectivity and separability, network flows

Planer graphs, combinatorial and geometric dual: Kuratowski graphs, detection of planarity, geometric dual, Discussion on criterion of planarity, thickness and crossings.

Unit -IV
Vector space of a graph and vectors, basis vector, cut set vector, circuit vector, circuit and cut set subspaces, Matrix representation of graph – Basic concepts; Incidence matrix, Circuit matrix, Path matrix, Cut-set matrix and Adjacency matrix.

Coloring, covering and partitioning of a graph, chromatic number, chromatic partitioning, chromatic polynomials, matching, covering, four color problem

Discussion of Graph theoretic algorithm wherever required.

References
1. Deo, N, Graph theory with applications to Engineering and Computer Science, PHI
2. Gary Chartrand and Ping Zhang, Introduction to Graph Theory, TMH
3. Robin J. Wilson, Introduction to Graph Theory, Pearson Education
4. Harary, F, Graph Theory, Narosa
5. Bondy and Murthy: Graph theory and application. Addison Wesley.
6. V. Balakrishnan, Schaum's Outline of Graph Theory, TMH
7. Geir Aagnarsson, Graph Theory: Modeling, Applications and Algorithms, Pearson Education
EIT-501: E-Commerce

Unit I:

Unit II:
Network Infrastructure for E-Commerce:
Internet and Intranet based E-commerce- Issues, problems and prospects, Network Infrastructure, Network Access Equipments, Broadband telecommunication (ATM, ISDN, FRAME RELAY).

Unit III

Unit IV
Encryption: Encryption techniques, Symmetric Encryption: Keys and data encryption standard, Triple encryption, Secret key encryption; Asymmetric encryption: public and private pair key encryption, Digital Signatures, Virtual Private Network.

Unit V
Electronic Payments: Overview, The SET protocol, Payment Gateway, certificate, digital Tokens, Smart card, credit card, magnetic strip card, E-Checks, Credit/Debit card based EPS, online Banking.

EDI Application in business, E-Commerce Law, Forms of Agreement, Govt. policies and Agenda.

References:
2. Pete Lohnin , John Vacca “Electronic Commerce”, New Age International
3. Goel, Ritendra “E-commerce”, New Age International
5. Bajaj and Nag, “E-Commerce the cutting edge of Business”, TMH

EIT-505 Information Security and Cyber Laws

UNIT-I
History of Information Systems and its Importance, basics, Changing Nature of Information Systems, Need of Distributed Information Systems, Role of Internet and Web Services,

Information System Threats and attacks, Classification of Threats and Assessing Damages

UNIT-I

UNIT-II

Physical Security- Needs, Disaster and Controls, Basic Tenets of Physical Security and Physical Entry Controls,

UNIT-III

Virtual Private Networks- Need, Use of Tunneling with VPN, Authentication Mechanisms, Types of VPNs and their Usage, Security Concerns in VPN

UNIT-IV

Security metrics- Classification and their benefits

Ethics- Ethical Issues, Issues in Data and Software Privacy

Cyber Crime Types & overview of Cyber Crimes

References :
1. Godbole,“ Information Systems Security”, Willey
2. Merkov, Breithaupt,“ Information Security”, Pearson Education
7. IT Act 2000
ECS-601: Computer Network

Unit-I

Unit-II

Unit-III

Unit-IV

Unit-V

References :
1. Forouzen, "Data Communication and Networking", TMH
2. A.S. Tanenbaum, Computer Networks, Pearson Education
5. G. Shanmugarathinam, ”Essential of TCP/ IP”, Firewall Media

ECS-602: Software Engineering

Unit-I: Introduction
Unit-II: Software Requirement Specifications (SRS)

Unit-III: Software Design

Unit-IV: Software Testing

Unit-V: Software Maintenance and Software Project Management

References:
4. Pankaj Jalote, Software Engineering, Wiley
ECS-603: Compiler Design

Unit – I
Introduction to Compiler, Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX-compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG.

Unit – II
Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables.

Unit – III
Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntax-directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations and case statements.

Unit – IV

Unit – V
Code Generation: Design Issues, the Target Language. Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, Code Generator. Code optimization: Machine-Independent Optimizations, Loop optimization, DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis

References:
2. V Raghvan, “Principles of Compiler Design”, TMH
4. Charles Fischer and Ricard LeBlanc,” Crafting a Compiler with C”, Pearson Education
ECS-604 Web Technology

Unit I: Introduction
Introduction to web, protocols governing the web, web development strategies, web applications, web project, web team.

Unit II: Web Page Designing
HTML: list, table, images, frames, forms, CSS;
XML: DTD, XML schemes, presenting and using XML

Unit III: Scripting
Java script: Introduction, documents, forms, statements, functions, objects;
Event and event handling; introduction to AJAX, VB Script, CGI

Unit IV: Server Site Programming
Introduction to active server pages (ASP), ASP.NET, java server pages (JSP), JSP application design, tomcat server, JSP objects, declaring variables and methods, debugging, sharing data between JSP pages, Session, introduction to COM/DCOM.

References
2. Deitel, “Java for programmers”, Pearson Education
4. Ramesh Bangia, “Internet and Web Design”, New Age International
6. Patel and Barik, ”Introduction to Web Technology & Internet”, Acme Learning

EIT-601: Software Project Management

UNIT-I: Introduction and Software Project Planning

UNIT-II: Project Organization and Scheduling

UNIT-III: Project Monitoring and Control
Dimensions of Project Monitoring & Control, Earned Value Analysis, Earned Value Indicators:
Budgeted Cost for Work Scheduled (BCWS), Cost Variance (CV), Schedule Variance (SV), Cost Performance Index (CPI), Schedule Performance Index (SPI), Interpretation of Earned Value Indicators, Error Tracking, Software Reviews, Types of Review: Inspections, Deskchecks, Walkthroughs, Code Reviews, Pair Programming.

UNIT-IV: Software Quality Assurance and Testing

UNIT-V: Project Management and Project Management Tools

References:
2. Royce, Software Project Management, Pearson Education

EIT-602: ERP

UNIT - I

UNIT - II
Business Process Reengineering, Data ware Housing, Data Mining, Online Analytic Processing(OLAP), Product Life Cycle Management(PLM),LAP, Supply chain Management.

UNIT - III

UNIT - IV
ERP Implementation Basics, ERP Implementation Life Cycle, Role of SDLC/SSAD, Object Oriented Architecture, Consultants, Vendors and Employees,

UNIT - V
ERP & E-Commerce, Future Directives- in ERP, ERP and Internet, Critical success and failure factors, Integrating ERP into organizational culture.
Using ERP tool: either SAP or ORACLE format to case study

References:

ECS-701 DISTRIBUTED SYSTEMS

Unit–I

Theoretical Foundation for Distributed System: Limitation of Distributed system, absence of global clock, shared memory, Logical clocks, Lamport’s & vectors logical clocks.

Unit–II
Distributed Mutual Exclusion: Classification of distributed mutual exclusion, requirement of mutual exclusion theorem, Token based and non token based algorithms, performance metric for distributed mutual exclusion algorithms.

Distributed Deadlock Detection: system model, resource Vs communication deadlocks, deadlock prevention, avoidance, detection & resolution, centralized dead lock detection, distributed dead lock detection, path pushing algorithms, edge chasing algorithms.

Unit–III

Distributed Resource Management: Issues in distributed File Systems, Mechanism for building distributed file systems, Design issues in Distributed Shared Memory, Algorithm for Implementation
of Distributed Shared Memory.

Unit–IV

Failure Recovery in Distributed Systems: Concepts in Backward and Forward recovery, Recovery in Concurrent systems, Obtaining consistent Checkpoints, Recovery in Distributed Database Systems.

Fault Tolerance: Issues in Fault Tolerance, Commit Protocols, Voting protocols, Dynamic voting protocols.

Unit –V

Transactions and Concurrency Control: Transactions, Nested transactions, Locks, Optimistic Concurrency control, Timestamp ordering, Comparison of methods for concurrency control.

Distributed Transactions: Flat and nested distributed transactions, Atomic Commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. Replication: System model and group communication, Fault - tolerant services, highly available services, Transactions with replicated data.

References:

2. Ramakrishna,Gehrke,” Database Management Systems”, Mc Grawhill
3. Coulouris, Dollimore, Kindberg, "Distributed System: Concepts and Design”, Pearson Education
4. Tenanuanbaum, Steen,” Distributed Systems”, PHI
5. Gerald Tel, "Distributed Algorithms", Cambridge University Press

ECS-702 DIGITAL IMAGE PROCESSING

UNIT-I

Introduction and Fundamentals

Image Enhancement in Frequency Domain

Fourier Transform and the Frequency Domain, Basis of Filtering in Frequency Domain, Filters – Low-pass, High-pass; Correspondence Between Filtering in Spatial and Frequency Domain; Smoothing Frequency Domain Filters – Gaussian Lowpass Filters; Sharpening Frequency Domain Filters – Gaussian Highpass Filters; Homomorphic Filtering.

UNIT-II

Image Enhancement in Spatial Domain

Introduction; Basic Gray Level Functions – Piecewise-Linear Transformation Functions: Contrast Stretching; Histogram Specification; Histogram Equalization; Local Enhancement; Enhancement using Arithmetic/Logic Operations – Image Subtraction, Image Averaging; Basics of Spatial Filtering; Smoothing - Mean filter, Ordered Statistic Filter; Sharpening – The Laplacian.
UNIT-III
Image Restoration
A Model of Restoration Process, Noise Models, Restoration in the presence of Noise only-Spatial Filtering – Mean Filters: Arithmetic Mean filter, Geometric Mean Filter, Order Statistic Filters – Median Filter, Max and Min filters; Periodic Noise Reduction by Frequency Domain Filtering – Bandpass Filters; Minimum Mean-square Error Restoration.

UNIT-IV
Morphological Image Processing
Introduction, Logic Operations involving Binary Images, Dilation and Erosion, Opening and Closing, Morphological Algorithms – Boundary Extraction, Region Filling, Extraction of Connected Components, Convex Hull, Thinning, Thickening

UNIT-V Registration
Introduction, Geometric Transformation – Plane to Plane transformation, Mapping, Stereo Imaging – Algorithms to Establish Correspondence, Algorithms to Recover Depth

Segmentation

References:

EIT-701 Cryptography & Network Security

Unit-I
Introduction to security attacks, services and mechanism, Classical encryption techniques-substitution ciphers and transposition ciphers, cryptanalysis, steganography, Stream and block ciphers.

Modern Block Ciphers: Block ciphers principles, Shannon’s theory of confusion and diffusion, fiestal structure, Data encryption standard(DES), Strength of DES, Idea of differential cryptanalysis, block cipher modes of operations, Triple DES
Unit-II
Introduction to group, field, finite field of the form GF(p), modular arithmetic, prime and relative prime numbers, Extended Euclidean Algorithm,

Advanced Encryption Standard (AES) encryption and decryption

Fermat’s and Euler’s theorem, Primality testing, Chinese Remainder theorem, Discrete Logarithmic Problem,

Principals of public key crypto systems, RSA algorithm, security of RSA

Unit-III
Message Authentication Codes: Authentication requirements, authentication functions, message authentication code, hash functions, birthday attacks, security of hash functions, Secure hash algorithm (SHA)

Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), proof of digital signature algorithm,

Unit-IV
Key Management and distribution: Symmetric key distribution, Diffie-Hellman Key Exchange, Public key distribution, X.509 Certificates, Public key Infrastructure.

Authentication Applications: Kerberos

Electronic mail security: pretty good privacy (PGP), S/MIME.

Unit-V

Introduction to Secure Socket Layer, Secure electronic, transaction (SET)

System Security: Introductory idea of Intrusion, Intrusion detection, Viruses and related threats, firewalls

References:
2. Behrouz A. Frouzan: Cryptography and Network Security, TMH
ECS-801: Artificial Intelligence

Unit-I

Unit-II

Unit-III
Knowledge Representation & Reasoning: Propositional logic, Theory of first order logic, Inference in First order logic, Forward & Backward chaining, Resolution, Probabilistic reasoning, Utility theory, Hidden Markov Models (HMM), Bayesian Networks.

Unit-IV
Machine Learning: Supervised and unsupervised learning, Decision trees, Statistical learning models, Learning with complete data - Naive Bayes models, Learning with hidden data - EM algorithm, Reinforcement learning,

Unit-V

References:
3. E Charniak and D McDermott, “Introduction to Artificial Intelligence”, Pearson Education
4. Dan W. Patterson, “Artificial Intelligence and Expert Systems”, Prentice Hall of India,
Syllabus of Elective Subjects
(Computer Science & Engineering and Information Technology)

EIT-061 Software Quality Engineering

UNIT-I: Introduction

UNIT-II: Software Quality Metrics

UNIT-III: Software Quality Management and Models

UNIT-IV: Software Quality Assurance

UNIT-V: Software Verification, Validation & Testing:

References:
1. Jeff Tian, Software Quality Engineering (SQE), Wiley
2. Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley
EIT-062 Software Testing

Unit-I: Introduction
Faults, Errors, and Failures, Basics of software testing, Testing objectives, Principles of testing, Requirements, behavior and correctness, Testing and debugging, Test metrics and measurements, Verification, Validation and Testing, Types of testing, Software Quality and Reliability, Software defect tracking.

Unit-II: White Box and Black Box Testing
White box testing, static testing, static analysis tools, Structural testing: Unit/Code functional testing, Code coverage testing, Code complexity testing, Black Box testing, Requirements based testing, Boundary value analysis, Equivalence partitioning, state/graph based testing, Model based testing and model checking, Differences between white box and Black box testing.

Unit-III: Integration, System, and Acceptance Testing
Top down and Bottom up integration, Bi-directional integration, System integration, Scenario Testing, Defect Bash, Functional versus Non-functional testing, Design/Architecture verification, Deployment testing, Beta testing, Scalability testing, Reliability testing, Stress testing, Acceptance testing: Acceptance criteria, test cases selection and execution,

Unit-IV: Test Selection & Minimization for Regression Testing
Regression testing, Regression test process, Initial Smoke or Sanity test, Selection of regression tests, Execution Trace, Dynamic Slicing, Test Minimization, Tools for regression testing, Ad hoc Testing: Pair testing, Exploratory testing, Iterative testing, Defect seeding.

Unit-V: Test Management and Automation

References:
UNIT-I: Introduction

UNIT-II: Software Reliability Metrics

UNIT-III: Software Reliability Assessment Models

UNIT-IV: Software Reliability Allocation Models

UNIT-V: Software Reliability Techniques
Reliability Techniques: Trending Reliability Techniques, Predicting Reliability Techniques, Error Seeding, Failure Rate, Curve Fitting, Reliability Growth, Models and Tools: Study of tools like CASRE, SARA, SMERFS.

References:
3. Jeff Tian, Software Quality Engineering (SQE), Wiley
4. Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley

ECS-071 COMPUTATIONAL GEOMETRY
UNIT-I
Convex hulls: construction in 2d and 3d, lower bounds; Triangulations: polygon triangulations, representations, point-set triangulations, planar graphs
UNIT-II
Voronoi diagrams: construction and applications, variants; Delauney triangulations: divide-and-conquer, flip and incremental algorithms, duality of Voronoi diagrams, min-max angle properties

UNIT-III
Geometric searching: point-location, fractional cascading, linear programming with prune and search, finger trees, concatenable queues, segment trees, interval trees; Visibility: algorithms for weak and strong visibility, visibility with reflections, art-gallery problems

UNIT-IV
Arrangements of lines: arrangements of hyper planes, zone theorems, many-faces complexity and algorithms; Combinatorial geometry: Ham-sandwich cuts.

UNIT-V
Sweep techniques: plane sweep for segment intersections, Fortune's sweep for Voronoi diagrams, topological sweep for line arrangements; Randomization in computational geometry: algorithms, techniques for counting; Robust geometric computing, Applications of computational geometry;

References:
1. Computational Geometry: An Introduction by Franco P. Preparata and Michael Ian Shamos; Springer Verlag
2. Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf, Computational Geometry, Algorithms and Applications, Springer-Verlag,

ECS-072 COMPUTATIONAL COMPLEXITY

UNIT-I
Models of Computation, resources (time and space), algorithms, computability, complexity.

UNIT-II
Complexity classes, P/NP/PSPACE, reductions, hardness, completeness, hierarchy, relationships between complexity classes.

UNIT-III
Randomized computation and complexity; Logical characterizations, incompleteness; Approximability.

UNIT-IV
Circuit complexity, lower bounds; Parallel computation and complexity; Counting problems; Interactive proofs.

UNIT-V
Probabilistically checkable proofs; Communication complexity; Quantum computation

References:

3. Steven Homer , Alan L. Selman , Computability and Complexity Theory , Springer

ECS-073 PARALLEL ALGORITHMS

Unit-I:
Sequential model, need of alternative model, parallel computational models such as PRAM, LMCC, Hypercube, Cube Connected Cycle, Butterfly, Perfect Shuffle Computers, Tree model, Pyramid model, Fully Connected model, PRAM-CREW, EREW models, simulation of one model from another one.

Unit-II:
Performance Measures of Parallel Algorithms, speed-up and efficiency of PA, Cost- optimality, An example of illustrate Cost- optimal algorithms- such as summation, Min/Max on various models.

Unit-III:
Parallel Sorting Networks, Parallel Merging Algorithms on CREW/EREW/MCC, Parallel Sorting Networks on CREW/EREW/MCC/, linear array

Unit-IV:
Parallel Searching Algorithm, Kth element, Kth element in X+Y on PRAM, Parallel Matrix Transportation and Multiplication Algorithm on PRAM, MCC, Vector-Matrix Multiplication, Solution of Linear Equation, Root finding.

Unit-V:
Graph Algorithms - Connected Graphs, search and traversal, Combinatorial Algorithms- Permutation, Combinations, Derrangements.

References:

ECS-074 Pattern Recognition

Unit-I

Unit-II
Statistical Patten Recognition: Bayesian Decision Theory, Classifiers, Normal density and discriminant functions,

Unit – III
Parameter estimation methods: Maximum-Likelihood estimation, Bayesian Parameter estimation, Dimension reduction methods - Principal Component Analysis (PCA), Fisher Linear discriminant analysis, Expectation-maximization (EM), Hidden Markov Models (HMM), Gaussian mixture models.

Unit - IV

Unit - V

References:

ECS-075 Data Mining & Data Warehousing

Unit-I
Overview, Motivation(for Data Mining), Data Mining-Definition & Functionalities, Data Processing, Form of Data Preprocessing, Data Cleaning: Missing Values, Noisy Data,(Binning, Clustering, Regression, Computer and Human inspection),Inconsistent Data, Data Integration and Transformation. Data Reduction:-Data Cube Aggregation, Dimensionality reduction, Data
Compression, Numerosity Reduction, Clustering, Discretization and Concept hierarchy generation

Unit-II
Concept Description:- Definition, Data Generalization, Analytical Characterization, Analysis of attribute relevance, Mining Class comparisons, Statistical measures in large Databases. Measuring Central Tendency, Measuring Dispersion of Data, Graph Displays of Basic Statistical class Description, Mining Association Rules in Large Databases, Association rule mining, mining Single-Dimensional Boolean Association rules from Transactional Databases– Apriori Algorithm, Mining Multilevel Association rules from Transaction Databases and Mining Multi-Dimensional Association rules from Relational Databases

Unit-III
Classification and Predictions:
What is Classification & Prediction, Issues regarding Classification and prediction, Decision tree, Bayesian Classification, Classification by Back propagation, Multilayer feed-forward Neural Network, Back propagation Algorithm, Classification methods K-nearest neighbor classifiers, Genetic Algorithm.
Cluster Analysis:
Data types in cluster analysis, Categories of clustering methods, Partitioning methods. Hierarchical Clustering- CURE and Chameleon, Density Based Methods-DBSCAN, OPTICS, Grid Based Methods- STING, CLIQUE, Model Based Method –Statistical Approach, Neural Network approach, Outlier Analysis

Unit-IV
Data Warehousing: Overview, Definition, Delivery Process, Difference between Database System and Data Warehouse, Multi Dimensional Data Model, Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept hierarchy, Process Architecture, 3 Tier Architecture, Data Marting.

Unit-V
Aggregation, Historical information, Query Facility, OLAP function and Tools. OLAP Servers, ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and Recovery, Tuning Data Warehouse, Testing Data Warehouse.

References:
1. M.H.Dunham,”Data Mining: Introductory and Advanced Topics” Pearson Education
2. Jiawei Han, Micheline Kamber, ”Data Mining Concepts & Techniques” Elsevier
ECS-076 Distributed Database

UNIT-I
Transaction and schedules, Concurrent Execution of transaction, Conflict and View Serializability, Testing for Serializability, Concepts in Recoverable and Cascadeless schedules.

UNIT –II
Lock based protocols, time stamp based protocols, Multiple Granularity and Multiversion Techniques, Enforcing serializability by Locks, Locking system with multiple lock modes, architecture for Locking scheduler

UNIT III
Distributed Transactions Management, Data Distribution, Fragmentation and Replication Techniques, Distributed Commit, Distributed Locking schemes, Long duration transactions, Moss Concurrency protocol.

UNIT –IV

UNIT V
Distributed Query Processing, Multiway Joins, Semi joins, Cost based query optimization for distributed database, Updating replicated data, protocols for Distributed Deadlock Detection, Eager and Lazy Replication Techniques

References
1. Silberschatz, orth and Sudershan, Database System Concept’, Mc Graw Hill
2. Ramakrishna and Gehrke,’ Database Management System, Mc Graw Hill
3. Garcia-Molina, Ullman,Widom,’ Database System Implementation’ Pearson Education
4. Ceei and Pelagatti,’Distributed Database’, TMH

ECS-077 Data Compression

Unit - I:
Unit – II:

Unit-III:

Unit – IV:
Distortion criteria, Models, Scalar Quantization: The Quantization problem, Uniform Quantizer, Adaptive Quantization, Non uniform Quantization.

Unit-V:
Advantages of Vector Quantization over Scalar Quantization, The Linde-Buzo-Gray Algorithm, Tree structured Vector Quantizers. Structured Vector Quantizers.

References:
1. Khalid Sayood, Introduction to Data Compression, Morgan Kaufmann Publishers

EIT-071 Discrete Structures

Unit-I
Set Theory: Introduction, Combination of sets, Multisets, Ordered pairs. Proofs of some general identities on sets.
Relations: Definition, Operations on relations, Properties of relations, Composite Relations, Equality of relations, Recursive definition of relation, Order of relations.
Functions: Definition, Classification of functions, Operations on functions, Recursively defined functions. Growth of Functions.
Natural Numbers: Introduction, Mathematical Induction, Variants of Induction, Induction with Nonzero Base cases. Proof Methods, Proof by counter – example, Proof by contradiction.

Unit-II
Algebraic Structures: Definition, Groups, Subgroups and order, Cyclic Groups, Cosets, Lagrange's theorem, Normal Subgroups, Permutation and Symmetric groups, Group Homomorphisms, Definition and elementary properties of Rings and Fields, Integers Modulo n.
Unit-III
Partial order sets: Definition, Partial order sets, Combination of partial order sets, Hasse diagram.
Lattices: Definition, Properties of lattices – Bounded, Complemented, Modular and Complete lattice.

Unit-IV
Propositional Logic: Proposition, well formed formula, Truth tables, Tautology, Satisfiability, Contradiction, Algebra of proposition, Theory of Inference
Predicate Logic: First order predicate, well formed formula of predicate, quantifiers, Inference theory of predicate logic.

Unit-V
Trees: Definition, Binary tree, Binary tree traversal, Binary search tree.
Graphs: Definition and terminology, Representation of graphs, Multigraphs, Bipartite graphs, Planar graphs, Isomorphism and Homeomorphism of graphs, Euler and Hamiltonian paths, Graph coloring
Recurrence Relation & Generating function: Recursive definition of functions, Recursive algorithms, Method of solving recurrences.
Combinatorics: Introduction, Counting Techniques, Pigeonhole Principle

References:
3. R.P. Grimaldi, Discrete and Combinatorial Mathematics, Addison Wesley,
5. B. Kolman, R.C. Busby, and S.C. Ross, Discrete Mathematical Structures, PHI

EIT-072 THEORY OF AUTOMATA AND FORMAL LANGUAGES
Unit – I
Introduction; Alphabets, Strings and Languages; Automata and Grammars, Deterministic finite Automata (DFA)-Formal Definition, Simplified notation: State transition graph, Transition table, Language of DFA, Nondeterministic finite Automata (NFA), NFA with epsilon transition, Language of NFA, Equivalence of NFA and DFA, Minimization of Finite Automata, Distinguishing one string from other, Myhill-Nerode Theorem

Unit – II
Regular expression (RE), Definition, Operators of regular expression and their precedence, Algebraic laws for Regular expressions, Kleen’s Theorem, Regular expression to FA, DFA to
Regular expression, Arden Theorem, Non Regular Languages, Pumping Lemma for regular Languages, Application of Pumping Lemma, Closure properties of Regular Languages, Decision properties of Regular Languages, FA with output: Moore and Mealy machine, Equivalence of Moore and Mealy Machine, Applications and Limitation of FA.

Unit – III
Context free grammar (CFG) and Context Free Languages (CFL): Definition, Examples, Derivation, Derivation trees, Ambiguity in Grammar, Inherent ambiguity, Ambiguous to Unambiguous CFG, Useless symbols, Simplification of CFGs, Normal forms for CFGs: CNF and GNF, Closure properties of CFLs, Decision Properties of CFLs: Emptiness, Finiteness and Membership, Pumping lemma for CFLs.

Unit – IV
Push Down Automata (PDA): Description and definition, Instantaneous Description, Language of PDA, Acceptance by Final state, Acceptance by empty stack, Deterministic PDA, Equivalence of PDA and CFG, CFG to PDA and PDA to CFG, Two stack PDA.

Unit – V

References:
1. Hopcroft, Ullman, “Introduction to Automata Theory, Languages and Computation”, Pearson Education
3. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

EIT-073 Bioinformatics

Unit I:
Bioinformatics objectives and overviews, Interdisciplinary nature of Bioinformatics, Data integration, Data analysis, Major Bioinformatics databases and tools. Metadata: Summary
& reference systems, finding new type of data online.

Molecular Biology and Bioinformatics: Systems approach in biology, Central dogma of molecular biology, problems in molecular approach and the bioinformatics approach, overview of the bioinformatics applications.

Unit II:
Basic chemistry of nucleic acids, Structure of DNA, Structure of RNA, DNA Replication, -Transcription, -Translation, Genes- the functional elements in DNA, Analyzing DNA,DNA sequencing. Proteins: Amino acids, Protein structure, Secondary, Tertiary and Quaternary structure, Protein folding and function, Nucleic acid-Protein interaction.

Unit III:
Perl Basics, Perl applications for bioinformatics- Bioperl, Linux Operating System, mounting/unmounting files, tar, gzip / gunzip, telnet, ftp, developing applications on Linux OS, Understanding and Using Biological Databases, Overview of Java, CORBA, XML, Web deployment concepts.

Unit IV:
Genome, Genomic sequencing, expressed sequence tags, gene expression, transcription factor binding sites and single nucleotide polymorphism. Computational representations of molecular biological data storage techniques: databases (flat, relational and object oriented), and controlled vocabularies, general data retrieval techniques: indices, Boolean search, fuzzy search and neighboring, application to biological data warehouses.

Unit V:
Macromolecular structures, chemical compounds, generic variability and its connection to clinical data. Representation of patterns and relationships: sequence alignment algorithms, regular expressions, hierarchies and graphical models, Phylogenetics. BLAST.

References
1. D E Krane & M L Raymer, ” Fundamental concepts of Bioinformatics”, Perason Education.
2. Rastogi, Mendiratta, Rastogi, “Bioinformatics Methods & applications, Genomics, Proteomics & Drug Discovery” PHI, New Delhi
4. O’Reilly, “ Developing Bioinformatics computer skills”, CBS
5. Forsdyke, “Evolutionary Bioinformatics”, Springer
UNIT I
Overview of Biometrics, Biometric Identification, Biometric Verification, Biometric Enrollment, Biometric System Security.

Common biometrics: Finger Print Recognition, Face Recognition, Speaker Recognition, Iris Recognition, Hand Geometry, Signature Verification

UNIT II
Introduction to Information Hiding: Technical Steganography, Linguistic Steganography, Copy Right Enforcement, Wisdom from Cryptography

UNIT III

Steganalysis: Looking for Signatures: - Extracting hidden Information, Disabling Hidden Information.

UNIT IV

UNIT V
Computer Forensics, Rules of evidence, Evidence dynamics, Evidence collection, Data recovery, Preservation of digital evidence, surveillance tools for future warfare,

References:
2. Peter Wayner, "Disappearing Cryptography: Information Hiding, Steganography and Watermarking 2/e", Elsevier

ECS-081 Real Time System

UNIT-I: Introduction

UNIT-II: Real Time Scheduling

UNIT-III: Resources Sharing

UNIT-IV: Real Time Communication
Basic Concepts in Real Time Communication, Soft and Hard RT Communication systems, Model of Real Time Communication, Priority-Based Service and Weighted Round-Robin Service Disciplines for Switched Networks, Medium Access Control Protocols for Broadcast Networks, Internet and Resource Reservation Protocols

UNIT-V: Real Time Operating Systems and Databases
Features of RTOS, Time Services, UNIX as RTOS, POSIX Issues, Characteristic of Temporal data, Temporal Consistency, Concurrency Control, Overview of Commercial Real Time databases
References:

ECS-082 Software Project Management

UNIT-I: Introduction and Software Project Planning

UNIT-II: Project Organization and Scheduling

UNIT-III: Project Monitoring and Control

UNIT-IV: Software Quality Assurance and Testing

UNIT-V: Project Management and Project Management Tools
References:
2. Royce, Software Project Management, Pearson Education
5. S. A. Kelkar, Software Project Management, PHI Publication.

ECS-083 Embedded Systems

Unit-I
Introduction to embedded systems: Classification, Characteristics and requirements, Applications

Unit-II
Timing and clocks in Embedded systems, Task Modeling and management, Real time operating system issues.

Unit-III
Signals, frequency spectrum and sampling, digitization (ADC, DAC), Signal Conditioning and Processing.
Modeling and Characterization of Embedded Computation System.

Unit-IV
Embedded Control and Control Hierarchy, Communication strategies for embedded systems: Encoding and Flow control.

Unit-V
Fault-Tolerance, Formal Verification., Trends in Embedded Processor, OS, Development Language

References:
ECS-084 Cryptography & Network Security

Unit-I
Introduction to security attacks, services and mechanism, Classical encryption techniques-substitution ciphers and transposition ciphers, cryptanalysis, steganography, Stream and block ciphers.
Modern Block Ciphers: Block ciphers principles, Shannon’s theory of confusion and diffusion, fiesta structure, Data encryption standard (DES), Strength of DES, Idea of differential cryptanalysis, block cipher modes of operations, Triple DES

Unit-II
Introduction to group, field, finite field of the form GF(p), modular arithmetic, prime and relative prime numbers, Extended Euclidean Algorithm,
Advanced Encryption Standard (AES) encryption and decryption
Fermat’s and Euler’s theorem, Primality testing, Chinese Remainder theorem, Discrete Logarithmic Problem,
Principals of public key crypto systems, RSA algorithm, security of RSA

Unit-III
Message Authentication Codes: Authentication requirements, authentication functions, message authentication code, hash functions, birthday attacks, security of hash functions, Secure hash algorithm (SHA)
Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), proof of digital signature algorithm,

Unit-IV
Key Management and distribution: Symmetric key distribution, Diffie-Hellman Key Exchange, Public key distribution, X.509 Certificates, Public key Infrastructure.
Authentication Applications: Kerberos
Electronic mail security: pretty good privacy (PGP), S/MIME.

Unit-V
Introduction to Secure Socket Layer, Secure electronic, transaction (SET)
System Security: Introductory idea of Intrusion, Intrusion detection, Viruses and related threats, firewalls

References:
ECS-085 Neural Networks

Unit-I:
Neurocomputing and Neuroscience
Historical notes, human Brain, neuron Model I, Knowledge representation, AI and NN. Learning process: Supervised and unsupervised learning, Error correction learning, competitive learning, adaptation, statistical nature of the learning process.

Unit-II:
Data processing
Scaling, normalization, Transformation (FT/FFT), principal component analysis, regression, covariance matrix, eigen values & eigen vectors. Basic Models of Artificial neurons, activation Functions, aggregation function, single neuron computation, multilayer perceptron, least mean square algorithm, gradient descent rule, nonlinearly separable problems and benchmark problems in NN.

Unit-III
Multilayered network architecture, back propagation algorithm, heuristics for making BP-algorithm performs better. Accelerated learning BP (like recursive least square, quick prop, RPROP algorithm), approximation properties of RBF networks and comparison with multilayer perceptron.

Unit-IV
Recurrent network and temporal feed-forward network, implementation with BP, self organizing map and SOM algorithm, properties of feature map and computer simulation. Principal component and Independent component analysis, application to image and signal processing.

Unit-V

References:
1. J.A. Anderson, An Introduction to Neural Networks, MIT
2. Hagen Demuth Beale, Neural Network Design, Cengage Learning
3. R.L. Harvey, Neural Network Principles, PHI
4. Kosko, Neural Network and Fuzzy Sets, PHI
ECS-086 Natural Language Processing

Unit-I

Unit-II
Introduction to semantics and knowledge representation, Some applications like machine translation, database interface.

Unit-III

Unit-IV

Unit-V

References:
2. James Allen, Natural Language Understanding, Pearson Education
3. D. Jurafsky, J. H. Martin, Speech and Language Processing, Pearson Education
4. L.M. Ivansca, S. C. Shapiro, Natural Language Processing and Language Representation
5. T. Winograd, Language as a Cognitive Process, Addison-Wesley

ECS-087 Mobile Computing

Unit – I
Introduction, issues in mobile computing, overview of wireless telephony: cellular concept, GSM: air-interface, channel structure, location management: HLR-VLR, hierarchical, handoffs, channel allocation in cellular systems, CDMA, GPRS.
Unit - II

Unit – III
Data management issues, data replication for mobile computers, adaptive clustering for mobile wireless networks, File system, Disconnected operations.

Unit - IV
Mobile Agents computing, security and fault tolerance, transaction processing in mobile computing environment.

Unit – V
Adhoc networks, localization, MAC issues, Routing protocols, global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Ad Hoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Ad Hoc Networks, applications.

References:
1. J. Schiller, Mobile Communications, Addison Wesley.
2. Charles Perkins, Mobile IP, Addison Wesley.

ECS-088 Soft Computing

Unit-I:
ARTIFICIAL NEURAL NETWORKS

Unit-II:
FUZZY SYSTEMS
Fuzzy sets, Fuzzy Relations and Fuzzy reasoning, Fuzzy functions - Decomposition - Fuzzy automata and languages - Fuzzy control methods - Fuzzy decision making.

Unit-III:
NEURO - FUZZY MODELING
Unit-IV:
GENETIC ALGORITHMS
Survival of the Fittest - Fitness Computations - Cross over - Mutation - Reproduction - Rank method - Rank space method.

Unit-V:
APPLICATION OF SOFT COMPUTING

References:
4. Laurene Fausett, "Fundamentals of Neural Networks", Prentice Hall

EIT-081 Digital Image Processing

UNIT-I
Introduction and Fundamentals

Image Enhancement in Frequency Domain
Fourier Transform and the Frequency Domain, Basis of Filtering in Frequency Domain, Filters – Low-pass, High-pass; Correspondence Between Filtering in Spatial and Frequency Domain; Smoothing Frequency Domain Filters – Gaussian Lowpass Filters; Sharpening Frequency Domain Filters – Gaussian Highpass Filters; Homomorphic Filtering.

UNIT-II
Image Enhancement in Spatial Domain
Introduction; Basic Gray Level Functions – Piecewise-Linear Transformation Functions: Contrast Stretching; Histogram Specification; Histogram Equalization; Local Enhancement; Enhancement using Arithmetic/Logic Operations – Image Subtraction, Image Averaging; Basics of Spatial Filtering; Smoothing - Mean filter, Ordered Statistic Filter; Sharpening – The Laplacian.
UNIT-III
Image Restoration
A Model of Restoration Process, Noise Models, Restoration in the presence of Noise only-Spatial Filtering – Mean Filters: Arithmetic Mean filter, Geometric Mean Filter, Order Statistic Filters – Median Filter, Max and Min filters; Periodic Noise Reduction by Frequency Domain Filtering – Bandpass Filters; Minimum Mean-square Error Restoration.

UNIT-IV
Morphological Image Processing
Introduction, Logic Operations involving Binary Images, Dilation and Erosion, Opening and Closing, Morphological Algorithms – Boundary Extraction, Region Filling, Extraction of Connected Components, Convex Hull, Thinning, Thickening

UNIT-V Registration
Introduction, Geometric Transformation – Plane to Plane transformation, Mapping, Stereo Imaging – Algorithms to Establish Correspondence, Algorithms to Recover Depth

Segmentation

References:

EIT-082 Multimedia Systems

Unit-I: Introduction
Introduction to Multimedia, Multimedia Information, Multimedia Objects, Multimedia in business and work. Convergence of Computer, Communication and Entertainment products

Stages of Multimedia Projects
Multimedia hardware, Memory & storage devices, Communication devices, Multimedia software's, presentation tools, tools for object generations, video, sound, image capturing, authoring tools, card and page based authoring tools.
Unit-II: Multimedia Building Blocks
Text, Sound MIDI, Digital Audio, audio file formats, MIDI under windows environment Audio & Video Capture.

Unit-III: Data Compression

Unit-IV: Speech Compression & Synthesis
Digital Audio concepts, Sampling Variables, Loss less compression of sound, loss compression & silence compression.

Unit-V: Images

References: