## NUMERICAL DIFFERENTIATION AND INTEGRATION

Lecture series on " Numerical Techniques and Programming in
MATLAB"
VBS Purvanchal University, Jaunpur
July 22-28, 2016
by

Dr. Sarvesh Kumar,<br>IIST Trivandrum

## Numerical Differentiation

## Basic problems

- Derive a formula that approximates the derivative of a function in terms of linear combination of function values (Function may be known )
- Approximate the value of a derivative of a function defined by discrete data.


## Solution Approaches ..

- Use Taylor Series Expansion.
- Pass a polynomial through the given data and differentiate the interpolating polynomial.


## Applications

To solve Ordinary and Partial Differential Equations.

## First Derivative..

Let $f:[a, b] \longrightarrow \mathbb{R}$, then the derivative of $f$ is another function say
$f^{\prime}:[a, b] \longrightarrow \mathbb{R}$ and defined by

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}, \quad \forall c \in(a, b) .
$$

Geometrically Speaking $f^{\prime}(c)$ is the slope of tangent to the curve $f(x)$ at $x=c$.

## Taylor Series

## Derivative of a function at $x=x_{0}$

Suppose $f$ has two continuous derivatives. Then, by Taylor's Theorem

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}(\theta)
$$

where $\theta \in\left(x_{0}, x_{0}+h\right)$. Now,

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

## Called Forward Formula

## Error

Error $=\mid$ true value - approximate value $\mid$

$$
\left|E_{D}(f)\right| \leq \max _{\theta \in[a, b]} \frac{h}{2}\left|f^{\prime \prime}(\theta)\right|
$$

Example

Example1. Using Taylor series find the derivative of $f(x)=x^{2}$ at $\mathbf{x}=1$, with $h=.1$. Also compute the error.

## Other formulae

## Backward Formula

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h}
$$

## Central Formula

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}
$$

Similarly, we can drive (Second Derivative )

$$
f^{\prime \prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-2 f\left(x_{0}\right)+f\left(x_{0}-h\right)}{h^{2}}
$$

## Derivative for discrete data using interpolating

polynomial

| $x$ | $x_{0}$ | $x_{1}$ | $x_{2}$ | $\ldots$ | $x_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | $f\left(x_{0}\right)$ | $f\left(x_{1}\right)$ | $f\left(x_{3}\right)$ | $\ldots$ | $f\left(x_{n}\right)$ |

Assumption: $x_{0}, x_{1} \cdots x_{n}$ are equispaced i.e., $x_{i}-x_{i-1}=h$. Where the explicit nature of the function $f$ is not known.

Remark 1: We can used Newton's Forward or Backward formula depends the location of the point

Remark 2: If data is not equispaced then Lagrange interpolating polynomial can be used.

## Using Newton's forward difference formula

$$
\begin{aligned}
f(x) \approx P_{n}(x)= & f\left(x_{0}\right)+s \Delta f\left(x_{0}\right)+\frac{s(s-1)}{2!} \Delta^{2} f\left(x_{0}\right)+\frac{s(s-1)(s-2)}{3!} \Delta^{3} f\left(x_{0}\right) \\
& \ldots \frac{s(s-1)(s-2) \cdots(s-n+1)}{n!} \Delta^{n} f\left(x_{0}\right)
\end{aligned}
$$

where

$$
x=x_{0}+s h
$$

We use $p_{n}(x)$ to calculate the derivatives of $f$.

That is $f^{\prime}(x) \simeq p_{n}^{\prime}(x)$ for all $x \in\left[x_{0}, x_{n}\right]$.

For a given $x$,

$$
\begin{gathered}
f^{\prime}(x) \simeq p_{n}^{\prime}(x) \\
=\frac{d p_{n}}{d s} \frac{d s}{d x} \\
=\frac{1}{h} \frac{d p_{n}}{d s}
\end{gathered}
$$

## Similarly,

$$
\begin{aligned}
& f^{\prime \prime}(x) \simeq \frac{d^{2} p_{n}}{d x^{2}} \\
& \frac{d}{d x}\left(\frac{d p_{n}}{d x}\right) \\
& =\frac{d}{d x}\left(\frac{d p_{n}}{d s} \frac{d s}{d x}\right) \\
& =\frac{1}{h} \frac{d}{d x}\left(\frac{d p_{n}}{d s}\right)
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1}{h}\left(\frac{d^{2} p_{n}}{d s^{2}} \frac{1}{h}\right) \\
=\frac{1}{h^{2}} \frac{d^{2} p_{n}}{d s^{2}}
\end{gathered}
$$

Thus in general,

$$
f^{(k)}(x)=\frac{1}{h^{k}} \frac{d^{k} p_{n}}{d s^{k}}
$$

## Example 1

Using Taylor series expansion (forward formula) and Newton forward divided difference, compute first and second derivative at $x=2$ for the following tabulated function

| $x$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 2 | 5 | 7 | 10 |

## Solution

| $x$ | $f(x)$ | $\Delta$ | $\Delta^{2}$ | $\Delta^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 |  |  |  |
| 2 | 5 |  | -1 |  |
|  |  | 2 |  | 2 |
| 3 | 7 |  | 1 |  |
| 4 | 10 |  |  |  |

Here $h=1$ Using Taylor series

$$
f^{\prime}(2)=\frac{f(2+h)-f(2)}{h}=\frac{f(3)-f(2)}{1}=2
$$

$$
f^{\prime \prime}(2)=\frac{f(2+h)-2 f(2)+f(2-h)}{h^{2}}=\frac{f(3)-2 f(2)+f(1)}{1}=-1
$$

## Using Newton forward divided difference formula

$$
\begin{aligned}
f(x) & \approx P_{n}(x)=f\left(x_{0}\right)+s \Delta f\left(x_{0}\right)+\frac{s(s-1)}{2!} \Delta^{2} f\left(x_{0}\right)+\frac{s(s-1)(s-2)}{3!} \Delta^{3} f\left(x_{0}\right) \\
f^{\prime}(x) & \approx \frac{1}{h} \frac{d p_{n}}{d s}=\frac{1}{h}\left[\Delta f\left(x_{0}\right)+\frac{2 s-1}{2!} \Delta^{2} f\left(x_{0}\right)+\frac{3 s^{2}-6 s+2}{3!} \Delta^{3} f\left(x_{0}\right)\right]
\end{aligned}
$$

Here $x=2, x_{0}=1, s=1$ and $h=1$

$$
\begin{gathered}
f^{\prime}(2)=3-\frac{1}{2}-\frac{1}{3}=13 / 6 \\
f^{\prime \prime}(x) \approx \frac{1}{h^{2}} \frac{d^{2} p_{n}}{d s^{2}}=\frac{1}{h^{2}}\left[\Delta^{2} f\left(x_{0}\right)+(s-1) \Delta^{3} f\left(x_{0}\right)\right] \\
f^{\prime \prime}(2)=-1
\end{gathered}
$$

## Example 2

Calculate $f^{(4)}(0.15)$

| $x$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(X)$ | 0.425 | 0.475 | 0.400 | 0.450 | 0.525 | 0.575 |

## Solution:

Newton's forward difference formula:

$$
\begin{aligned}
& p_{5}(x)=f\left(x_{0}\right)+s \triangle^{1} f\left(x_{0}\right)+\frac{s^{2}-s}{2} \triangle^{2} f\left(x_{0}\right)+\frac{s^{3}-3 s^{2}+2 s}{6} \triangle^{3} f\left(x_{0}\right)+ \\
& +\frac{s^{4}-6 s^{3}+11 s^{2}-6 s}{24} \triangle^{4} f\left(x_{0}\right)+\frac{s^{5}-10 s^{4}+35 s^{3}-50 s^{2}+24 s}{120} \triangle^{5} f\left(x_{0}\right)
\end{aligned}
$$

## Differentiating this 4 -times we get,

$$
\begin{aligned}
& \frac{d^{4} f}{d x^{4}} \simeq \frac{d p_{5}^{4}}{d x^{4}}=\frac{1}{h^{4}}\left[\triangle^{4} f\left(x_{0}\right)+\frac{1}{5}(5 s-10) \triangle^{5} f\left(x_{0}\right)\right. \\
& \quad=\frac{1}{h^{4}}\left[\triangle^{4} f\left(x_{0}\right)+(s-2) \triangle^{5} f\left(x_{0}\right)\right] \\
& =\frac{1}{(0.1)^{4}}[-035+(0.5-2)(0.4)]=-95.00 \times 10^{2}
\end{aligned}
$$



## Numerical Integration

If $f:[a, b] \longrightarrow R$ is differentiable then, we obtain a new function $f^{\prime}$ : $[a, b] \longrightarrow R$, called the derivative of $f$. Likewise, if $f:[a, b] \longrightarrow R$ is integrable, then we obtain a new function $F:[a, b] \longrightarrow R$ defined by

$$
F(x)=\int_{a}^{x} f(t) d t \quad \forall x \in[a, b] .
$$

Observation: If $f$ is nonnegative function, then $\int_{a}^{b} f(x) d x$ is represent the area under the curve $f(x)$.

## Antiderivative

Antiderivative: Let $F:[a, b] \longrightarrow R$ be such that $f=F^{\prime}$, then $F$ is called an antiderivative of $f$.

## Recall

Fundamental Theorem of Calculus: Let $f:[a, b] \longrightarrow R$ is integrable and has an antiderivative $F$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

## Basic Problems

- Difficult to find an antiderivative of the function (for example $f(x)=$ $\left.e^{-x^{2}}\right)$
- Function is given in the tabular form.


## Newton-Cotes Methods/Formulae

The derivation of Newton-Cotes formula is based on Polynomial Interpolation.

| $x$ | $x_{0}$ | $x_{1}$ | $x_{2}$ | $\cdots$ | $x_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | $f\left(x_{0}\right)$ | $f\left(x_{1}\right)$ | $f\left(x_{3}\right)$ | $\cdots$ | $f\left(x_{n}\right)$ |

## The idea is:

Replace $f$ by $p_{n}(x)$ and evaluate $\int_{a}^{b} p_{n}(x) d x$

That is,

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \simeq \int_{a}^{b} p_{n}(x) d x & =\int_{a}^{b} \sum_{i=0}^{n} l_{i}(x) f\left(x_{i}\right) d x \\
& =\sum_{i=0}^{n} f\left(x_{i}\right) \int_{a}^{b} l_{i}(x) d x \\
& =\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
\end{aligned}
$$

Where $A_{i}=\int_{a}^{b} l_{i}(x) d x$ called weights.

## Types of Newton-Cotes Formulae

- Trapezoidal Rule (Two pint formula)
- Simpson's $1 / 3$ Rule (Three Point formula)
- Simpson's $3 / 8$ Rule (Four point formula)


## Trapezoidal Rule

Since it is two point formula, it uses the first order interpolation polynomial $P_{1}(x)$.

$$
\begin{gathered}
\int_{a}^{b} f(x) \approx \int_{x_{0}}^{x_{1}} P_{1}(x) d x \\
P_{1}(x)=f\left(x_{0}\right)+s \Delta f\left(x_{0}\right) \\
s=\frac{x-x_{0}}{h}
\end{gathered}
$$

Now, $d x=h d s$ at $x=x_{0}, s=0$ and at $x=x_{1}, s=1$.

Hence,

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \int_{0}^{1}\left(f\left(x_{0}\right)+s \Delta f\left(x_{0}\right)\right) h d s=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right] \\
& \text { OR } \\
& \int_{a}^{b} f(x) d x \approx \frac{b-a}{2}[f(a)+f(b)]
\end{aligned}
$$

Error

$$
E^{T}=-\frac{(b-a)^{3}}{12} f^{\prime \prime}(\xi),
$$

where $a<\xi<b$
Remark: $x_{0}=a$ and $x_{1}=b$.

## Basic Simpson's $\frac{1}{3}$ Rule

To evaluate $\int_{a}^{b} f(x) d x$.

- $f$ will be replaced by a polynomial of degree 2 which interpolates $f$ at $a, \frac{a+b}{2}$ and $b$. Here, $x_{0}=a, x_{1}=\frac{a+b}{2}, x_{2}=b$

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{b+a}{2}\right)+f(b) .\right]
$$

Error

$$
E^{s}=\frac{-h^{5} f^{(4)}(\xi)}{90}
$$

for some $\xi \in(a, b)$.

## Basic Simpson's $\frac{3}{8}$ Rule

- $f$ is replaced by $p_{3}(x)$ which interpolates $f$ at $x_{0}=a, \quad x_{1}=a+$ $h, \quad x_{2}=a+2 h, \quad x_{3}=a+3 h=b$. where $h=\frac{b-a}{3}$. Thus we get:

$$
\int_{a}^{b} f(x) d x \simeq \frac{3 h}{8}\left[f_{0}+3 f_{1}+3 f_{2}+f_{3}\right]
$$

Error: $E^{s}=\frac{-3 h^{5}}{80} f^{(4)}(\xi)$, where $a<\xi<b$.

## Example

Using Trapezoidal and Simpson $\frac{1}{3}$ rules find $\int_{0}^{2} x^{4} d x$ and $\int_{0}^{2} \sin x d x$ and find the upper bound for the error.

## Composite Rules

Note that if the integral $[a, b]$ is large, then the error in the Trapezoidal rule will be large.

## Idea

Error can be reduced by dividing the interval $[a, b]$ into equal subinterval and apply quadrature rules in each subinterval.

Composite Trapezoidal Rule

$$
h=\frac{b-a}{n}, \quad x_{i}=x_{0}+i h
$$

## Composite Rule

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{n}} f(x) d x=\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) d x
$$

Now apply Trapezoidal rule on each $\left[x_{i-1}, x_{i}\right]$, we have

$$
\int_{a}^{b} f(x) d x=\frac{h}{2}\left[f\left(x_{0}\right)+2 *\left(f\left(x_{1}\right)+f\left(x_{2}\right) \cdots f\left(x_{n-1}\right)\right)+f\left(x_{n}\right)\right]
$$

## Error in composite Trapezoidal rule

$$
E^{C T}=-(b-a) \frac{h^{2}}{12} f^{\prime \prime}(\xi), \quad \xi \in[a, b]
$$

## The Composite Simpson's $\frac{1}{3}$ Rule

- $[a, b]$ will be will be divided into $2 n$ equal subintervals and we apply basic Simpson's $\frac{1}{3}$ rule on each of the $n$ intervals $\left[x_{2 i-2}, x_{2 i}\right]$ for $i=$ $1,2,3, \cdots, n$.

Thus here $h=\frac{b-a}{2 n}$.

Then

$$
\begin{gathered}
\int_{a}^{b} f(x) d x=\int_{a=x_{0}}^{b=x_{2 n}} f(x) d x \\
=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots+\int_{x_{2 i-2}}^{x_{2 i}} f(x) d x+\cdots+\int_{x_{2 n-2}}^{x_{2 n}} f(x) d x
\end{gathered}
$$

$$
\begin{gathered}
=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\frac{h}{3}\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]+ \\
+\cdots+\frac{h}{3}\left[f\left(x_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f\left(x_{2 n}\right)\right] \\
=\frac{h}{3}\left\{f\left(x_{0}\right)+4 \times\left[f\left(x_{1}\right)+f\left(x_{3}\right)+f\left(x_{5}\right)+\cdots+f\left(x_{2 n-1}\right)\right]+\right. \\
\left.+2 \times\left[f\left(x_{2}\right)+f\left(x_{4}\right)+f\left(x_{6}\right)+\cdots+f\left(x_{2 n-2}\right)\right]+f\left(x_{2 n}\right)\right\} \\
E^{C S}=-(b-a) \frac{h^{4}}{180} f^{(4)}(\xi)
\end{gathered}
$$

where $\xi \in[a, b]$

## Example

Evaluate the integral $\int_{-1}^{1} x^{2} \exp (-x) d x$ by composite Simpson's $\frac{1}{3}$ rule with spacing $h=0.25$

Solution: According to composite Simpson's $\frac{1}{3}$ rule:

$$
\begin{gathered}
\int_{-1}^{1} x^{2} \exp (-x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\right. \\
\left.+4 f\left(x_{5}\right)+2 f\left(x_{6}\right)+4 f\left(x_{7}\right)+f\left(x_{8}\right)\right]
\end{gathered}
$$

Here $f\left(x_{0}\right)=f(-1)=2.7183$
$f\left(x_{1}\right)=f(-0.75)=1.1908$

$$
f\left(x_{2}\right)=f(-0.5)=0.4122
$$

$$
f\left(x_{3}\right)=f(-0.25)=0.0803
$$

$$
f\left(x_{4}\right)=f(0)=0
$$

$$
f\left(x_{5}\right)=f(0.25)=0.0487
$$

$$
f\left(x_{6}\right)=f(0.50)=0.1516
$$

$$
f\left(x_{7}\right)=f(0.75)=0.2657
$$

$$
f\left(x_{8}\right)=f(1)=0.3679
$$

## Substituting these values in the above formula we get:

$$
\int_{-1}^{1} x^{2} \exp (-x) d x \simeq 0.87965
$$

## Example

Find the minimum no. of subintervals, used in composite Trapezoidal and Simpson's $1 / 3$ rule in order to find the integral $\int_{0}^{1} e^{-x^{4}} d x$ such that the error can not exceed by .00001 .

Sol. For the composite Trapezoidal rule, we have

$$
\frac{1^{3} \max _{0<\xi<1}\left|f^{\prime \prime}(\xi)\right|}{12 n_{\text {trap }}^{2}} \leq .00001
$$

For the composite Simpson $1 / 3$ rule, we have

$$
\frac{1^{4} \max _{0<\xi<1}\left|f^{(4)}(\xi)\right|}{180 n_{\text {simp }}^{4}} \leq .00001
$$

Now,

$$
\max _{0<\xi<1}\left|f^{\prime \prime}(\xi)\right| \leq 3.5, \quad \max _{0<\xi<1}\left|f^{(4)}(\xi)\right| \leq 95
$$

(Please verify )

## Hence

$$
n_{\text {trap }}=171, n_{\text {simp }}=16
$$

## Composite Simpson's $\frac{3}{8}$ rule

- $[a, b]$ is divided into $3 n$ equal subintervals. ( $h=\frac{b-a}{3 n}$. and we apply $\frac{3}{8}$ rule on each of the $n$ intervals $\left[x_{3 i-3}, x_{3 i}\right]$ for $i=1,2,3, \cdots, n$.)

Hence,

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \simeq \int_{x_{0}=a}^{x_{3}} f(x) d x+\int_{x_{3}}^{x_{6}} f(x) d x+\cdots+\int_{x_{3 n_{3}}}^{x_{3 n}=b} f(x) d x \\
=\frac{3 h}{8}\left[f_{0}+3 f_{1}+3 f_{2}+f_{3}\right]+\frac{3 h}{8}\left[f_{3}+3 f_{4}+3 f_{5}+f_{6}\right]+ \\
+\cdots+\frac{3 h}{8}\left[f_{3 n-3}+3 f_{3 n-2}+3 f_{3 n-1}+f_{3 n}\right]
\end{gathered}
$$

$=\frac{3 h}{8}\left[f_{0}+3 f_{1}+3 f_{2}+2 f_{3}+3 f_{4}+3 f_{5}+2 f_{6}+3 f_{7}+\cdots+3 f_{3 n-1}+f_{3 n}\right]$

## Remember:

- $f$ with suffices of multiple 3 are multiplied by 2.
- Others by 3, except the end points.


## Example

Use composite simpson's $\frac{3}{8}$ rule, find the velocity after 18 seconds, if a rocket has acceleration as given in the table:

| $t=$ | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a=$ | 40 | 60 | 70 | 75 | 80 | 83 | 85 | 87 | 88 | 88 |
|  | $f_{0}$ | $f_{1}$ | $f_{2}$ | $f_{3}$ | $f_{4}$ | $f_{5}$ | $f_{6}$ | $f_{7}$ | $f_{8}$ | $f_{9}$ |

Sol: Velocity $v=\frac{3 h}{8}\left[f_{0}+3 f_{1}+3 f_{2}+2 f_{3}+3 f_{4}+3 f_{5}+2 f_{6}+3 f_{7}+3 f_{8}+f_{9}\right]=$ $\frac{3}{4}[40+3 \times 60+3 \times 70+2 \times 75+3 \times 80+383+2 \times 83+2 \times 85+3 \times 87+3 \times 88+88]$

$$
=1389 \quad \text { units }
$$

## Method of Undetermined Parameters

The Newton - Cotes integration rules are all of the form

$$
I(f) \simeq A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)+\cdots+A_{n} f\left(x_{n}\right)
$$

Also, note that the weights $A_{i}$ 's do not depend on the given function.
Hence, if the error is of the form

$$
E(I)=\text { Const } \times f^{(r+1)}(\eta) .
$$

Then the rule must be exact for all polynomials of degree $\leq r$

## Therefore

If we wish to construct a rule of the form

$$
I(f) \simeq A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+a_{2} f\left(x_{2}\right)+\cdots+A_{n} f\left(x_{n}\right)
$$

(n-fixed) which is exact for polynomials of degree as high as possible,
i.e., we want

$$
E(I)=\text { Const } \times f^{(r+1)}(\eta),
$$

with $r$ as large as possible.
This way of constructing integration rules is called the " Method of Undetermined Parameters".

## Example

Suppose we want to derive an integration formula of the form:
$\int_{a}^{b} f(x) d x=A_{0} f(a)+A_{1} f(b)+\alpha f^{\prime \prime}(\xi)$.
We assume that:The rule is exact for the polynomials $1, x, x^{2}$.

Now, taking $f(x)=1$, we get $b-a=A_{0}+A_{1}$
Taking $f(x)=x$ we get $\frac{b^{2}-a^{2}}{2}=A_{0} a+A_{1} b$
Solving the above two equations we get, $A_{0}=A_{1}=\frac{b-a}{2}$.
Thus, $\int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)]+\alpha f^{\prime \prime}(\xi)$

Now if we take $f(x)=x^{2}$, we get:

$$
\begin{aligned}
& \frac{b^{3}-a^{3}}{3}=\left(\frac{b-a}{2}\right)\left(a^{2}+b^{2}\right)+2!\alpha \\
& \Longrightarrow \alpha=-\frac{(b-a)^{3}}{12}
\end{aligned}
$$

Thus

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)]-\frac{(b-a)^{3}}{12} f^{\prime \prime}(\xi)
$$

We see that: This is exactly the trapezoidal rule. Similarly, Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rules can be derived.

## Thus in the Method of Undetermined Parameters

- We aim directly for a formula of a preselected type.

Working Method:

- We impose certain conditions on a formula of desired form and use these conditions to determine the values of the unknown coefficients in the formula.


## The Error term in the Simpson's $\frac{3}{8}$-rule, using Method

## of Undetermined Parameters

Start with:

$$
\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3 h}{8}\left[f_{0}+3 f_{1}+3 f_{2}+f_{3}\right]+\alpha f^{(4)}(\xi)
$$

for some suitable $\xi \in\left(x_{0}, x_{3}\right)$.

Takeing $f(x)=x^{4}$ in the above integration rule we get:

$$
\frac{x_{3}^{5}-x_{0}^{5}}{5}=\frac{3 h}{8}\left[x_{0}^{4}+3 x_{1}^{4}+3 x_{2}^{4}+x_{3}^{4}\right]+\alpha 4!
$$

$$
\begin{aligned}
& 4!\alpha=\frac{x_{3}^{5}-x_{0}^{5}}{5}-\frac{3 h}{8}\left[x_{0}^{4}\right]+3\left(x_{0}+h\right)^{4}+3\left(x_{0}+2 h\right)^{4}+\left(x_{0}+3 h\right)^{4} \\
= & \frac{\left(x_{0}+3 h\right)^{5}-x_{0}^{5}}{5}-\frac{3 h}{8}\left[x_{0}^{4}\right]+3\left(x_{0}+h\right)^{4}+3\left(x_{0}+2 h\right)^{4}+\left(x_{0}+3 h\right)^{4}
\end{aligned}
$$

Without loss of generality, we can take: $x_{0}=0$.
We have: $4!\alpha=\frac{243}{5} h^{5}-\frac{3 h^{5}}{8}[0+3+3 \times 16+81]$ Thus

$$
4!\alpha=-\frac{9}{10} h^{5}
$$

That is,

$$
\alpha=-\frac{3}{80} h^{5}
$$

Therefore the error in the Simpson's rule is =

$$
-\frac{3}{80} h^{5} f^{(4)}(\xi)
$$

for some suitable $\xi \in(a, b)$.

## Recall

The Newton - Cotes integration rules are all of the form

$$
I(f) \simeq A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)+\cdots+A_{n} f\left(x_{n}\right)
$$

Also, note that the weights $A_{i}$ 's do not depend on the given function.
Hence, if the error is of the form $E(I)=$ Const $\times f^{(r+1)}(\eta)$. Then the rule must be exact for all polynomials of degree $\leq r$.
Remark: In these quadrature the points $x_{i}$ are fixed.
Ques: Can we improve the accuracy by choosing some suitable $x_{i}$
Ans: Using Gaussian Quadrature rule one can improve the accuracy.

## Example

Find $x_{0}, x_{1}, A_{0}, A_{1}$ and $\alpha$ so that the following rule is exact for all polynomials of degree $\leq 3$.

$$
\int_{-1}^{1} f(x) d x=A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+\alpha f^{(4)}(\xi)
$$

(There are 4 unknowns and hence we have chosen the 4 -th derivative in the error term.)

Taking $f(x)=1, x, x^{2}, x^{3}$ we get:
$A_{0}+A_{1}=2$

$$
A_{0} x_{0}+A_{1} x_{1}=0
$$

$$
A_{0} x_{0}^{2}+A_{1} x_{1}^{2}=\frac{2}{3}
$$

$$
A_{0} x_{0}^{3}+A_{1} x_{1}^{3}=0
$$

On solving these equations we get:
$A_{0}=A_{1}=1 x_{0}=-\frac{1}{\sqrt{3}}$ and $x_{1}=\frac{1}{\sqrt{3}}$.
Thus the integration rule is: $\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)+\alpha f^{(4)}(\xi)$.
Now if we take $f(x)=x^{4}$ we get

$$
\frac{2}{5}=\frac{2}{9}+\alpha 4!
$$

$$
\Longrightarrow \alpha=\frac{1}{4!}\left(\frac{8}{45}\right)=\frac{1}{135}
$$

Thus the expected integration rule is:

$$
\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)+\frac{1}{135} f^{(4)}(\xi)
$$

## In general

Giving a positive integer $n$, we wish to determine $2 n+2$ numbers $x_{0}, x_{1}, \cdots x_{n}$ and $A_{0}, A_{1}, \cdots, A_{n}$ so that the sum

$$
I(f) \simeq A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)+\cdots+A_{n} f\left(x_{n}\right),
$$

provides the exact value of $\int_{a}^{b} f(x) d x$ for $f(x)=1, x, x^{2}, \cdots x^{2 n+1}$.
Or What we want is that the quadrature rule is exact for all polynomials of degree $\leq 2 n+1$.

Remark: Here we have to solve system of nonlinear equations, which is some time is not an easy job.

