NUMERICAL DIFFERENTIATION AND INTEGRATION

Lecture series on "Numerical Techniques and Programming in

*

MATLAB"

VBS Purvanchal University, Jaunpur

July 22-28, 2016

by

Dr. Sarvesh Kumar,

IIST Trivandrum

Numerical Differentiation

Basic problems

- Derive a formula that approximates the derivative of a function in terms of linear combination of function values (Function may be known)
- Approximate the value of a derivative of a function defined by discrete data.

Solution Approaches ..

- Use Taylor Series Expansion.
- Pass a polynomial through the given data and differentiate the interpolating polynomial.

Applications

To solve Ordinary and Partial Differential Equations.

First Derivative..

Let $f : [a,b] \longrightarrow \mathbb{R}$, then the derivative of f is another function say $f' : [a,b] \longrightarrow \mathbb{R}$ and defined by

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}, \qquad \forall c \in (a,b).$$

Geometrically Speaking f'(c) is the slope of tangent to the curve f(x) at x = c.

Taylor Series

Derivative of a function at $x = x_0$

Suppose f has two continuous derivatives. Then, by Taylor's Theorem

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(\theta)$$

where $\theta \in (x_0, x_0 + h)$. Now,

$$f'(x_0) \approx \frac{f(x_0+h) - f(x_0)}{h}$$

Called Forward Formula

Error

Error = |true value – approximate value|

$$|E_D(f)| \le \max_{\theta \in [a,b]} \frac{h}{2} |f^{"}(\theta)|$$

Example

Example1. Using Taylor series find the derivative of $f(x) = x^2$ at x=1, with h = .1. Also compute the error.

Other formulae

Backward Formula

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$$

Central Formula

$$f'(x_0) \approx \frac{f(x_0+h) - f(x_0-h)}{2h}$$

Similarly, we can drive (Second Derivative)

$$f''(x_0) \approx \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}$$

Derivative for discrete data using interpolating

polynomial

x	x_0	x_1	x_2	 x_n
f(x)	$f(x_0)$	$f(x_1)$	$f(x_3)$	 $f(x_n)$

Assumption: $x_0, x_1 \cdots x_n$ are equispaced i.e., $x_i - x_{i-1} = h$. Where the explicit nature of the function *f* is not known.

Remark 1: We can used Newton's Forward or Backward formula depends the location of the point

Remark 2: If data is not equispaced then Lagrange interpolating polynomial can be used.

Using Newton's forward difference formula

$$f(x) \approx P_n(x) = f(x_0) + s\Delta f(x_0) + \frac{s(s-1)}{2!} \Delta^2 f(x_0) + \frac{s(s-1)(s-2)}{3!} \Delta^3 f(x_0)$$

$$\dots \frac{s(s-1)(s-2)\cdots(s-n+1)}{n!} \Delta^n f(x_0)$$

where

$$x = x_0 + sh$$

We use $p_n(x)$ to calculate the derivatives of f.

That is $f'(x) \simeq p'_n(x)$ for all $x \in [x_0, x_n]$.

For a given x,

$$f'(x) \simeq p'_n(x)$$
$$= \frac{dp_n}{ds} \frac{ds}{dx}$$
$$= \frac{1}{h} \frac{dp_n}{ds}$$

Similarly,

$$f''(x) \simeq \frac{d^2 p_n}{dx^2}$$
$$\frac{d}{dx} \left(\frac{dp_n}{dx}\right)$$
$$= \frac{d}{dx} \left(\frac{dp_n}{ds}\frac{ds}{dx}\right)$$
$$= \frac{1}{h} \frac{d}{dx} \left(\frac{dp_n}{ds}\right)$$

$$= \frac{1}{h} \left(\frac{d^2 p_n}{ds^2} \frac{1}{h}\right)$$
$$= \frac{1}{h^2} \frac{d^2 p_n}{ds^2}$$

Thus in general,

$$f^{(k)}(x) = \frac{1}{h^k} \frac{d^k p_n}{ds^k}$$

Example 1

Using Taylor series expansion (forward formula) and Newton forward divided difference, compute first and second derivative at x = 2 for the following tabulated function

x	1	2	3	4
f(x)	2	5	7	10

Solution

x	f(x)	Δ	Δ^2	Δ^3
1	2			
		3		
2	5		-1	
		2		2
3	7		1	
		3		
4	10			

Here h = 1 Using Taylor series

$$f'(2) = \frac{f(2+h) - f(2)}{h} = \frac{f(3) - f(2)}{1} = 2$$

$$f''(2) = \frac{f(2+h) - 2f(2) + f(2-h)}{h^2} = \frac{f(3) - 2f(2) + f(1)}{1} = -1$$

Using Newton forward divided difference formula

$$f(x) \approx P_n(x) = f(x_0) + s\Delta f(x_0) + \frac{s(s-1)}{2!}\Delta^2 f(x_0) + \frac{s(s-1)(s-2)}{3!}\Delta^3 f(x_0)$$
$$f'(x) \approx \frac{1}{h}\frac{dp_n}{ds} = \frac{1}{h}\left[\Delta f(x_0) + \frac{2s-1}{2!}\Delta^2 f(x_0) + \frac{3s^2 - 6s + 2}{3!}\Delta^3 f(x_0)\right]$$

Here x = 2, $x_0 = 1$, s = 1 and h = 1

$$f'(2) = 3 - \frac{1}{2} - \frac{1}{3} = \frac{13}{6}$$

$$f''(x) \approx \frac{1}{h^2} \frac{d^2 p_n}{ds^2} = \frac{1}{h^2} \left[\Delta^2 f(x_0) + (s-1) \Delta^3 f(x_0) \right]$$
$$f''(2) = -1$$

Example 2

Calculate $f^{(4)}(0.15)$

x	0.1	0.2	0.3	0.4	0.5	0.6
f(X)	0.425	0.475	0.400	0.450	0.525	0.575

Solution:

Newton's forward difference formula:

$$p_{5}(x) = f(x_{0}) + s \bigtriangleup^{1} f(x_{0}) + \frac{s^{2} - s}{2} \bigtriangleup^{2} f(x_{0}) + \frac{s^{3} - 3s^{2} + 2s}{6} \bigtriangleup^{3} f(x_{0}) + \frac{s^{4} - 6s^{3} + 11s^{2} - 6s}{24} \bigtriangleup^{4} f(x_{0}) + \frac{s^{5} - 10s^{4} + 35s^{3} - 50s^{2} + 24s}{120} \bigtriangleup^{5} f(x_{0})$$

Differentiating this 4-times we get,

$$\frac{d^4f}{dx^4} \simeq \frac{dp_5^4}{dx^4} = \frac{1}{h^4} [\triangle^4 f(x_0) + \frac{1}{5}(5s - 10)\triangle^5 f(x_0)]$$

$$= \frac{1}{h^4} [\triangle^4 f(x_0) + (s-2) \triangle^5 f(x_0)]$$

$$=\frac{1}{(0.1)^4}[-0.35 + (0.5 - 2)(0.4)] = -95.00 \times 10^2$$

x	f(x)	$\triangle^1 f$	$\triangle^2 f$	$\triangle^3 f$	$\triangle^4 f$	$\triangle^5 f$		
0.1	0.425							
		0.050						
0.2	0.475		-0.125					
		-0.075		0.25				
0.3	0.400		0.125		-0.35			
	í	0.050		-0.100		0.4		
0.4	0.450		0.025		0.05			
		0.075		-0.05				
0.5	0.525		-0.025					
		0.050						
	e 9 ri 5 75′N	umerical technic	ues and MATLA	B", July 22-28,	2016 Dr. Sa	rvesh Kuma	r, IIST Trivandrum.	18

Numerical Integration

If $f : [a, b] \longrightarrow R$ is differentiable then, we obtain a new function $f' : [a, b] \longrightarrow R$, called the derivative of f. Likewise, if $f : [a, b] \longrightarrow R$ is integrable, then we obtain a new function $F : [a, b] \longrightarrow R$ defined by

$$F(x) = \int_{a}^{x} f(t)dt \qquad \forall x \in [a, b].$$

Observation: If *f* is nonnegative function, then $\int_{a}^{b} f(x)dx$ is represent the area under the curve f(x).

Antiderivative

Antiderivative: Let $F : [a, b] \longrightarrow R$ be such that f = F', then F is called an antiderivative of f.

Recall

Fundamental Theorem of Calculus: Let $f : [a, b] \longrightarrow R$ is integrable and has an antiderivative *F*, then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Basic Problems

• Difficult to find an antiderivative of the function (for example f(x) =

• Function is given in the tabular form.

 e^{-x^2})

Newton-Cotes Methods/Formulae

The derivation of Newton-Cotes formula is based on Polynomial Interpolation.

x	x_0	x_1	x_2	 x_n
f(x)	$f(x_0)$	$f(x_1)$	$f(x_3)$	 $f(x_n)$

The idea is:

Replace f by $p_n(x)$ and evaluate $\int_a^b p_n(x) dx$

That is,

$$\int_{a}^{b} f(x)dx \simeq \int_{a}^{b} p_{n}(x)dx = \int_{a}^{b} \sum_{i=0}^{n} l_{i}(x)f(x_{i})dx$$
$$= \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} l_{i}(x)dx$$
$$= \sum_{i=0}^{n} A_{i}f(x_{i})$$

Where $A_i = \int_a^b l_i(x) dx$ called weights.

Types of Newton-Cotes Formulae

- Trapezoidal Rule (Two pint formula)
- Simpson's 1/3 Rule (Three Point formula)
- Simpson's 3/8 Rule (Four point formula)

Trapezoidal Rule

Since it is two point formula, it uses the first order interpolation polynomial $P_1(x)$.

$$\int_{a}^{b} f(x) \approx \int_{x_0}^{x_1} P_1(x) dx$$

$$P_1(x) = f(x_0) + s\Delta f(x_0)$$
$$s = \frac{x - x_0}{h}$$

Now, dx = h ds at $x = x_0, s = 0$ and at $x = x_1, s = 1$.

Hence,

$$\int_{a}^{b} f(x)dx \approx \int_{0}^{1} (f(x_{0}) + s\Delta f(x_{0}))hds = \frac{h}{2} \left[f(x_{0}) + f(x_{1}) \right]$$

OR

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \left[f(a) + f(b) \right]$$

Error

$$E^T = -\frac{(b-a)^3}{12}f''(\xi),$$

where $a < \xi < b$

Remark: $x_0 = a$ and $x_1 = b$.

Basic Simpson's $\frac{1}{3}$ **Rule**

To evaluate $\int_a^b f(x) dx$.

• f will be replaced by a polynomial of degree 2 which interpolates f at

a, $\frac{a+b}{2}$ and b. Here, $x_0 = a, x_1 = \frac{a+b}{2}, x_2 = b$

$$\int_{a}^{b} f(x) \, dx = \frac{b-a}{6} [f(a) + 4f(\frac{b+a}{2}) + f(b).]$$

Error

$$E^s = \frac{-h^5 f^{(4)}(\xi)}{90}$$

for some $\xi \in (a, b)$.

Basic Simpson's $\frac{3}{8}$ **Rule**

• f is replaced by $p_3(x)$ which interpolates f at $x_0 = a$, $x_1 = a + a$

 $h, x_2 = a + 2h, x_3 = a + 3h = b$. where $h = \frac{b-a}{3}$. Thus we get:

$$\int_{a}^{b} f(x)dx \simeq \frac{3h}{8}[f_0 + 3f_1 + 3f_2 + f_3]$$

Error:
$$E^s = \frac{-3h^5}{80}f^{(4)}(\xi)$$
, where $a < \xi < b$.

Example

Using Trapezoidal and Simpson $\frac{1}{3}$ rules find $\int_0^2 x^4 dx$ and $\int_0^2 sinx dx$ and find the upper bound for the error.

Composite Rules

Note that if the integral [a, b] is large, then the error in the Trapezoidal rule will be large.

Idea

Error can be reduced by dividing the interval [a, b] into equal subinterval and apply quadrature rules in each subinterval.

Composite Trapezoidal Rule

$$h = \frac{b-a}{n}, \ x_i = x_0 + ih$$

Composite Rule

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{n}} f(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x)dx$$

Now apply Trapezoidal rule on each $[x_{i-1}, x_i]$, we have

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(x_0) + 2 * (f(x_1) + f(x_2) \cdots f(x_{n-1})) + f(x_n) \right]$$

Error in composite Trapezoidal rule

$$E^{CT} = -(b-a)\frac{h^2}{12}f''(\xi), \ \xi \in [a,b]$$

The Composite Simpson's $\frac{1}{3}$ Rule

• [a, b] will be will be divided into 2n equal subintervals and we apply basic Simpson's $\frac{1}{3}$ rule on each of the n intervals $[x_{2i-2}, x_{2i}]$ for $i = 1, 2, 3, \dots, n$.

Thus here
$$h = \frac{b-a}{2n}$$
.

Then

$$\int_{a}^{b} f(x)dx = \int_{a=x_{0}}^{b=x_{2n}} f(x)dx$$
$$= \int_{x_{0}}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{4}} f(x)dx + \dots + \int_{x_{2i-2}}^{x_{2i}} f(x)dx + \dots + \int_{x_{2n-2}}^{x_{2n}} f(x)dx$$

$$= \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)] + \frac{h}{3}[f(x_2) + 4f(x_3) + f(x_4)] + \dots + \frac{h}{3}[f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n})]$$
$$= \frac{h}{3}\{f(x_0) + 4 \times [f(x_1) + f(x_3) + f(x_5) + \dots + f(x_{2n-1})] + 2 \times [f(x_2) + f(x_4) + f(x_6) + \dots + f(x_{2n-2})] + f(x_{2n})\}$$

$$E^{CS} = -(b-a)\frac{h^4}{180}f^{(4)}(\xi),$$

where $\xi \in [a, b]$

Example

Evaluate the integral $\int_{-1}^{1} x^2 \exp(-x) dx$ by composite Simpson's $\frac{1}{3}$ rule with spacing h = 0.25

Solution: According to composite Simpson's $\frac{1}{3}$ rule:

$$\int_{-1}^{1} x^2 \exp(-x) dx = \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + 2f(x_5) + 4f(x_5) + 2f(x_5) + 4f(x_5) + 2f(x_5) + 4f(x_5) + 2f(x_5) +$$

$$+4f(x_5) + 2f(x_6) + 4f(x_7) + f(x_8)]$$

Here $f(x_0) = f(-1) = 2.7183$

 $f(x_1) = f(-0.75) = 1.1908$

$$f(x_2) = f(-0.5) = 0.4122$$

$$f(x_3) = f(-0.25) = 0.0803$$

$$f(x_4) = f(0) = 0$$

$$f(x_5) = f(0.25) = 0.0487$$

$$f(x_6) = f(0.50) = 0.1516$$

 $f(x_7) = f(0.75) = 0.2657$

 $f(x_8) = f(1) = 0.3679$

Substituting these values in the above formula we get:

$$\int_{-1}^{1} x^2 \exp(-x) dx \simeq 0.87965$$

Example

Find the minimum no. of subintervals, used in composite Trapezoidal and Simpson's 1/3 rule in order to find the integral $\int_0^1 e^{-x^4} dx$ such that the error can not exceed by .00001.

Sol. For the composite Trapezoidal rule, we have

$$\frac{1^3 \max_{0 < \xi < 1} |f''(\xi)|}{12n_{trap}^2} \le .00001$$

For the composite Simpson 1/3 rule, we have

$$\frac{1^4 \max_{0 < \xi < 1} |f^{(4)}(\xi)|}{180 n_{simp}^4} \le .00001$$

Now,

$$\max_{0<\xi<1}|f^{''}(\xi)|\leq 3.5,\qquad \max_{0<\xi<1}|f^{(4)}(\xi)|\leq 95$$
 (Please verify)

Hence

$$n_{trap} = 171, n_{simp} = 16$$

Composite Simpson's $\frac{3}{8}$ rule

• [a, b] is divided into 3n equal subintervals. $(h = \frac{b-a}{3n})$. and we apply $\frac{3}{8}$ rule on each of the *n* intervals $[x_{3i-3}, x_{3i}]$ for $i = 1, 2, 3, \dots, n$.)

Hence,

$$\int_{a}^{b} f(x)dx \simeq \int_{x_{0}=a}^{x_{3}} f(x)dx + \int_{x_{3}}^{x_{6}} f(x)dx + \dots + \int_{x_{3}n_{3}}^{x_{3}n=b} f(x)dx$$

$$= \frac{3h}{8}[f_0 + 3f_1 + 3f_2 + f_3] + \frac{3h}{8}[f_3 + 3f_4 + 3f_5 + f_6] + \dots + \frac{3h}{8}[f_{3n-3} + 3f_{3n-2} + 3f_{3n-1} + f_{3n}]$$

$=\frac{3h}{8}[f_0+3f_1+3f_2+2f_3+3f_4+3f_5+2f_6+3f_7+\cdots+3f_{3n-1}+f_{3n}]$

Remember:

- *f* with suffices of multiple 3 are multiplied by 2.
- Others by 3, *except the end points*.

Example

Use composite simpson's $\frac{3}{8}$ rule, find the velocity after 18 seconds, if a

rocket has acceleration as given in the table:

t =	0	2	4	6	8	10	12	14	16	18
a =	40	60	70	75	80	83	85	87	88	88
	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9

Sol: Velocity $v = \frac{3h}{8}[f_0 + 3f_1 + 3f_2 + 2f_3 + 3f_4 + 3f_5 + 2f_6 + 3f_7 + 3f_8 + f_9] = \frac{3}{4}[40 + 3 \times 60 + 3 \times 70 + 2 \times 75 + 3 \times 80 + 383 + 2 \times 83 + 2 \times 85 + 3 \times 87 + 3 \times 88 + 88]$

= 1389 units.

Method of Undetermined Parameters

The Newton - Cotes integration rules are all of the form

$$I(f) \simeq A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2) + \dots + A_n f(x_n)$$

Also, note that the weights A_i 's do not depend on the given function. Hence, if the error is of the form

 $E(I) = Const \times f^{(r+1)}(\eta).$

Then the rule must be exact for all polynomials of degree $\leq r$

Therefore

If we wish to construct a rule of the form

$$I(f) \simeq A_0 f(x_0) + A_1 f(x_1) + a_2 f(x_2) + \dots + A_n f(x_n)$$

(n-fixed) which is exact for polynomials of degree as high as possible, i.e., we want

$$E(I) = Const \times f^{(r+1)}(\eta),$$

with r as large as possible.

This way of constructing integration rules is called the "Method of Undetermined Parameters".

Example

Suppose we want to derive an integration formula of the form:

$$\int_{a}^{b} f(x)dx = A_0 f(a) + A_1 f(b) + \alpha f''(\xi).$$

We assume that: The rule is exact for the polynomials $1, x, x^2$.

Now, taking
$$f(x) = 1$$
, we get $b - a = A_0 + A_1$

Taking
$$f(x) = x$$
 we get $\frac{b^2 - a^2}{2} = A_0 a + A_1 b$

Solving the above two equations we get, $A_0 = A_1 = \frac{b-a}{2}$.

Thus,
$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} [f(a) + f(b)] + \alpha f''(\xi)$$

Now if we take $f(x) = x^2$, we get:

$$\frac{b^3 - a^3}{3} = (\frac{b - a}{2})(a^2 + b^2) + 2! \alpha$$

$$\implies \alpha = -\frac{(b-a)^3}{12}$$

Thus

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2}[f(a)+f(b)] - \frac{(b-a)^{3}}{12}f''(\xi)$$

We see that: This is exactly the trapezoidal rule. Similarly, Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rules can be derived.

Thus in the Method of Undetermined Parameters

• We aim directly for a formula of a preselected type.

Working Method:

• We impose certain conditions on a formula of desired form and use these conditions to determine the values of the unknown coefficients in the formula.

The Error term in the Simpson's $\frac{3}{8}$ -rule, using Method of Undetermined Parameters

Start with:

$$\int_{x_0}^{x_3} f(x)dx = \frac{3h}{8}[f_0 + 3f_1 + 3f_2 + f_3] + \alpha \ f^{(4)}(\xi)$$

for some suitable $\xi \in (x_0, x_3)$.

Takeing $f(x) = x^4$ in the above integration rule we get:

$$\frac{x_3^5 - x_0^5}{5} = \frac{3h}{8} [x_0^4 + 3x_1^4 + 3x_2^4 + x_3^4] + \alpha 4!$$

$$4!\alpha = \frac{x_3^5 - x_0^5}{5} - \frac{3h}{8}[x_0^4] + 3(x_0 + h)^4 + 3(x_0 + 2h)^4 + (x_0 + 3h)^4$$
$$= \frac{(x_0 + 3h)^5 - x_0^5}{5} - \frac{3h}{8}[x_0^4] + 3(x_0 + h)^4 + 3(x_0 + 2h)^4 + (x_0 + 3h)^4$$

Without loss of generality, we can take: $x_0 = 0$.

We have: $4! \alpha = \frac{243}{5} h^5 - \frac{3h^5}{8} [0 + 3 + 3 \times 16 + 81]$ Thus

$$4!\alpha = -\frac{9}{10}h^5$$

That is,

$$\alpha = -\frac{3}{80}h^5$$

Therefore the error in the Simpson's rule is =

$$-\frac{3}{80}h^5 f^{(4)}(\xi)$$

for some suitable $\xi \in (a, b)$.

Recall

The Newton - Cotes integration rules are all of the form

$$I(f) \simeq A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2) + \dots + A_n f(x_n)$$

Also, note that the weights A_i 's do not depend on the given function. Hence, if the error is of the form $E(I) = Const \times f^{(r+1)}(\eta)$. Then the rule must be exact for all polynomials of degree $\leq r$. Remark: In these quadrature the points x_i are fixed. Ques: Can we improve the accuracy by choosing some suitable x_i Ans: Using Gaussian Quadrature rule one can improve the accuracy.

Example

Find x_0 , x_1 , A_0 , A_1 and α so that the following rule is exact for all polynomials of degree ≤ 3 .

$$\int_{-1}^{1} f(x)dx = A_0 f(x_0) + A_1 f(x_1) + \alpha f^{(4)}(\xi)$$

(There are 4 unknowns and hence we have chosen the 4-th derivative in the error term.)

Taking $f(x) = 1, x, x^2, x^3$ we get:

 $A_0 + A_1 = 2$

$$A_0 x_0 + A_1 x_1 = 0$$
$$A_0 x_0^2 + A_1 x_1^2 = \frac{2}{3}$$
$$A_0 x_0^3 + A_1 x_1^3 = 0$$

On solving these equations we get:

$$A_0 = A_1 = 1 \ x_0 = -\frac{1}{\sqrt{3}} \text{ and } x_1 = \frac{1}{\sqrt{3}}.$$

Thus the integration rule is: $\int_{-1}^{1} f(x) dx = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}) + \alpha f^{(4)}(\xi)$.

Now if we take $f(x) = x^4$ we get

$$\frac{2}{5} = \frac{2}{9} + \alpha 4!$$

$$\implies \alpha = \frac{1}{4!} \left(\frac{8}{45}\right) = \frac{1}{135}$$

Thus the expected integration rule is:

$$\int_{-1}^{1} f(x)dx = f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}) + \frac{1}{135}f^{(4)}(\xi)$$

In general

Giving a positive integer n, we wish to determine 2n + 2 numbers $x_0, x_1, \dots x_n$ and A_0, A_1, \dots, A_n so that the sum

$$I(f) \simeq A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2) + \dots + A_n f(x_n),$$

provides the exact value of $\int_{a}^{b} f(x)dx$ for $f(x) = 1, x, x^{2}, \dots x^{2n+1}$. Or What we want is that the quadrature rule is exact for all polynomials of degree $\leq 2n + 1$.

Remark: Here we have to solve system of nonlinear equations, which is some time is not an easy job.