

MATERIALS ENGINEERING

Ankush Gaurav Assistant Professor

Mechanical Engineering Discipline

Uma Nath Singh Institute of Engineering & Technology Veer Bahadur Singh Purvanchal University, Jaunpur, India

ankushgaurav.vbspu@gmail.com

CRYSTAL SYSTEMS And

Introduction to Miller Indices

• The unit cell geometry is completely defined in terms of six parameters: the three edge lengths *a*, *b*, and *c*, and the three inter axial angles \propto , β , γ called lattice parameter

• On this basis there are seven different possible combinations of lattice parame ter each of which represents a distinct **crystal system**.

Ans. (b)

For a Rhombohedral space lattice, which one of the following is correct? (a) $\alpha = \beta = \gamma = 90^{\circ}$ (b) $\alpha = \beta = \gamma \neq 90^{\circ}$ [IES 2007] (c) $\alpha = \gamma = 90^{\circ} \neq \beta$ (d) $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Which one of the following pairs of axis lengths (a, b, c) and inter-axial angles (α , β , γ) represents the tetragonal crystal system? [IES-2001]

(a) $a = b = c; \alpha = \beta = \gamma = 90^{0}$ (b) $a = b \neq c; \alpha = \beta = \gamma = 90^{0}$ (c) $a \neq b \neq c; \alpha = \beta = \gamma = 90^{0}$ (d) $a = b = c; \alpha = \beta = \gamma \neq 90^{0}$ Ans. (b)

System	Bravais Lattice
Cubic	Simple
	Body-Centered
	Face Centered
Tetragonal	Simple
	Body-Centered
Orthorhombic	Simple
	Base Centered
	Body-Centered
	Face Centered

Monoclinic	Simple
	Base Centered
Triclinic	Simple
Trigonal	Simple
(Rhombohedral)	
Hexagonal	Simple

Relation between Atomic radius and Lattice constant

- Simple cubic: a = 2R
- Body centered cubic

$$a = \frac{4R}{\sqrt{3}}$$

Face centered cubic

 $a = 2\sqrt{2}R$

83

Figure 7.15 Simple cubic packing

Figure 7.16 Body centered cubic structure

Which one of the following pairs is not correctly matched?

[IES-2006]

Space Lattice Relation between Atomic radius **r** and Edge element **a**

(a)	Simple cubic structure	: $a^2 = 4 r^2$
(b)	Body-centred cubic structure	: $3a^2 = 16r^2$
(c)	Triclinic	: $2a^2 = 3r^2$
(d)	Face-centred cubic structure	: $a^2 = 8r^2$

Ans. (c)

Match List-I (Name of the Element) with List-II (Crystal Structure) and select the
correct answer using the codes given below the lists:[IES-2001]List IList II

					100	**			
А.	Fluorspa	1. E	1. Body-centered cubic						
В.	Alpha-Ir	on			2. Hexagonal closed packed				
C.	C. Silver					3. Simple cubic			
D. Zinc					4. Face-centered cubic				
Co	des: A	B	С	D		Α	B	С	D
(a)	3	2	4	1	(b)	4	1	3	2
(c)	4	2	3	1	(d)	3	1	4	2
An	s. (d)								

	List - I					List - II				
A.	Alpha Ir	on			Hexagonal closed packed					
В.	Copper				2.	Body-cei	ntred cu	bic		
С.	Zinc				3.	Amorphe	ous			
D.	D. Glass 4.						Face-centred cubic			
Co	des: A	В	С	D		Α	В	С	D	
(a)	2	3	1	4	(b)	1	4	2	3	
(c)	2	4	1	3	(d)	1	3	2	4	

CRYSTALLOGRAPHIC DIRECTIONS AND PLANES

• Miller indices are used to specify directions and planes.

Miller indices for direction is denoted as [u v w] or family of directions as $\langle u v w \rangle_{b}$

Miller indices for crystal plane is denoted as (h k l) or family of planes as {h k l}

POINT COORDINATES

The position of point located within a unit cell CAN BE specified in terms of its coor dinates as fractional multiples of the unit cell edge lengths (i.e., in terms of *a*, *b*, an d *c*).

 $1\frac{1}{2}1$

Point coordinates for all atom positions for a BCC unit cell

Point	Fr	Point			
Number	x axis	y axis	z axis	Coordinates	
1	0	0	0	0 0 0	
2	1	0	0	$1 \ 0 \ 0$	
3	1	1	0	110	
4	0	1	0	010	
5	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}\frac{1}{2}\frac{1}{2}$	
6	Ō	Ō	1	0 0 1	
7	1	0	1	101	
8	1	1	1	111	
9	0	1	1	011	

References

- Material Science by S Montal Question 12 pdf
- Callister Fundamentals of Materials Science and Engineering 5e
- William D. Callister Materials Science and Engineering. An Introduction-W iley (2006)
- <u>http://web.eng.fiu.edu/wangc/EGN3365-12.pdf</u>
- <u>https://www.youtube.com/watch?v=Wst5Ga8pHDY</u>
- <u>http://home.iitk.ac.in/~anandh/E-book/</u>
- <u>https://www.pinterest.com/pin/80572280807838287/</u>
- <u>https://www.slideserve.com/mildred/unit-vii-crystal-structure</u>

Thank You

