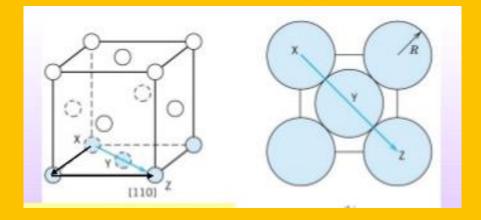


MATERIALS ENGINEERING

Ankush Gaurav Assistant Professor

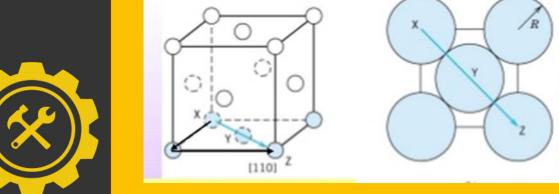
Mechanical Engineering Discipline

Uma Nath Singh Institute of Engineering & Technology Veer Bahadur Singh Purvanchal University, Jaunpur, India


ankushgaurav.vbspu@gmail.com

Linear and Planar Density

Linear Density



$$LD \frac{2}{a\sqrt{2}}$$

Question: Lattice constant of a copper unit cell is 2.61 A. Compute the density of atoms per unit length along the directions [110]. Find for [111] also

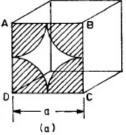
$$LD = 2/(a\sqrt{2})$$

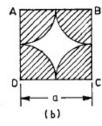
LD=
$$\{2/(3.61*10^{-10})\sqrt{2}\}=3.91*10^9$$
 atoms per meter

Planar Density

PD = Number of atoms centered on a given plane

Area of the plane

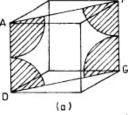


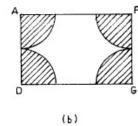

Planar density on (100) plane in a Simple Cubic Structure:

- Number of atoms on (100) plane is 1
- Area of (100) plane (square section) is

$$a \times a = a^{2}$$

PD = 1 atom /
$$a^2$$
 = 1 / a^2





Planar density on (110) plane in a Simple Cubic Structure:

- Number of atoms on (110) plane is 1 Ag
- Area of (110) plane (rectangular section) is $\sqrt{2}a^2$

PD = 1 atom /
$$\sqrt{2}$$
 a² =
= 1 / $\sqrt{2}$ a²

References

- Callister Fundamentals of Materials Science and Engineering 5e
- William D. Callister Materials Science and Engineering. An Introduction-Wiley (2006)
- https://www.slideshare.net/RakeshSingh125/f-crystalstructure
- https://www.quora.com/How-is-FCC-used-in-chemistry
- https://www.slideshare.net/djk239/mt-201-b-material-science-new

Thank You

