UNIT - 1

DATA REPRESENTATION

Dr. Saurabh Pal Associate Professor & Head Department of Computer Applications Veer Bahadur Singh Purvanchal University, Jaunpur

OBJECTIVES

- × Various types of number systems
- × Conversion between number system
- × Decimal to Binary, Octal, Hexadecimal Conversion
- × Binary, Octal, Hexadecimal to Decimal Conversion

NUMBER SYSTEM

- Number systems are the technique to represent numbers in the computer system architecture, every value that you are saving or getting into/from computer memory has a defined number system.
- Computer architecture supports following number systems.
 - + Binary number system
 - + Octal number system
 - + Decimal number system
 - + Hexadecimal (hex) number system

DESCRIPTIONS OF NUMBER SYSTEM

× Binary Number System

+ A Binary number system has only two digits that are 0 and 1. Every number (value) represents with 0 and 1 in this number system. The base of binary number system is 2, because it has only two digits.

× Octal number system

+ Octal number system has only eight (8) digits from 0 to 7. Every number (value) represents with 0,1,2,3,4,5,6 and 7 in this number system. The base of octal number system is 8, because it has only 8 digits.

DESCRIPTIONS OF NUMBER SYSTEM

× Decimal number system

+ Decimal number system has only ten (10) digits from 0 to 9. Every number (value) represents with 0,1,2,3,4,5,6, 7,8 and 9 in this number system. The base of decimal number system is 10, because it has only 10 digits.

× Hexadecimal number system

+ A Hexadecimal number system has sixteen (16) alphanumeric values from 0 to 9 and A to F. Every number (value) represents with 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E and F in this number system. The base of hexadecimal number system is 16, because it has 16 alphanumeric values. Here A is 10, B is 11, C is 12, D is 13, E is 14 and F is 15.

DESCRIPTIONS OF NUMBER SYSTEM

Number system	Base	Used digits	Example
Binary	2	0,1	(11110000) ₂
Octal	8	0,1,2,3,4,5,6,7	(360) ₈
Decimal	10	0,1,2,3,4,5,6,7,8,9	(240) ₁₀
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F	(F0) ₁₆

NUMBER SYSTEM CONVERSION

There are three types of conversion:

- + Decimal Number System to Other Base [for example: Decimal Number System to Binary Number System]
- + Other Base to Decimal Number System [for example: Binary Number System to Decimal Number System]
- + Other Base to Other Base [for example: Binary Number System to Hexadecimal Number System]

DECIMAL NUMBER SYSTEM TO OTHER BASE

- To convert Number system from Decimal Number System to Any Other Base is quite easy; you have to follow just two steps:
 - + Divide the Number (Decimal Number) by the base of target base system (in which you want to convert the number: Binary (2), octal (8) and Hexadecimal (16)).
 - + Write the remainder from step 1 as a Least Signification Bit (LSB) to Step last as a Most Significant Bit (MSB).

DECIMAL NUMBER SYSTEM TO BINARY

Dec	imal Num	ber is : (12	34!	5)10	
2	12345		1	LSB	
2	6172		0		
2	3086		0		
2	1543		1		
2	771		1		
2	385		1		
2	192		0		Rinany Number is
2	96		0		bindry Number is
2	48		0		(11000000111001)
2	24		0		(1100000111001)/
2	12		0		
2	6		0		
2	3		1		
	1		1	MSB	

DECIMAL NUMBER SYSTEM TO OCTAL

Decimal Number is : (12345)10

Octal Number is (30071)8

DECIMAL NUMBER SYSTEM TO HEXADECIMAL

Decimal Number is : (12345)10

Hexadecimal Number is (3039)16

OTHER BASE SYSTEM TO DECIMAL

- To convert Number System from Any Other Base System to Decimal Number System, you have to follow just three steps:
 - Determine the base value of source Number System (that you want to convert), and also determine the position of digits from LSB (first digit's position – 0, second digit's position – 1 and so on).
 - Multiply each digit with its corresponding multiplication of position value and Base of Source Number System's Base.
 - + Add the resulted value in step-B.

BINARY NUMBER SYSTEM TO DECIMAL

Binary Number is : (11000000111001)2

1	1	0	0	0	0	0	0	1	1	1	0	0	1
13	12	11	10	9	8	7	6	5	4	3	2	1	0
1x2 ¹³	1x2 ¹²	0x2 ¹¹	0x2 ¹⁰	0x2 ⁹	0x2 ⁸	0x2 ⁷	0x2 ⁶	1x2 ⁵	1x2 ⁴	1x2 ³	0x2 ²	0x21	1x2 ⁰
8192	4096	0	0	0	0	0	0	32	16	8	0	0	1

=8192+4096+32+16+8+1

=12345

OCTAL NUMBER SYSTEM TO DECIMAL

Octal Number is : (30071)8

3	0	0	7	1
4	3	2	1	0
3*8 ⁴	0*8 ³	0*8 ²	7 *8 ¹	1*8 ⁰
12288	0	0	56	1

- =12288+0+0+56+1
- =12345

Decimal Number is: (12345)10

HEXADECIMAL NUMBER SYSTEM TO DECIMAL

Hexadecimal Number is : (2D5)16

2	D (13)	5
2	1	0
2*16 ²	13*16 ¹	5*16 ⁰
512	208	5

=512+208+5 =725 Decimal Number is: (725)₁₀

UNIT - 1

DATA REPRESENTATION

Dr. Saurabh Pal Associate Professor & Head Department of Computer Applications Veer Bahadur Singh Purvanchal University, Jaunpur

OBJECTIVES

- × Description of Coding Scheme
- × ASCII
- × EBCDIC
- × Unicode

DESCRIPTION OF CODING SCHEME

- Coding schemes are a common way of representing a character of data. It is required in computers for exchanging data. The following are a few common coding schemes-
 - + ASCII: It stands for the American Standard Code for Information Interchange. It is used on almost all computers, hence considered as a standard coding scheme.
 - + EBCDIC: It stands for Extended Binary Coded Decimal Interchange Code. Its is primarily used in IBM and IBMcompatible mainframes.
 - + Unicode: It is designed to accommodate alphabets (-256). It uses 16 bits to represent one character and requires twice as much space to store data. It can have a maximum of 65,536 possible values.

ASCII

- × ASCII stands for American Standard Code for Information Interchange
- The code uses 7 bits to encode 128 unique characters
- As a note, formally, work to create this code began in 1960. 1st standard in 1963. Last updated in 1986.

ASCII EXAMPLE

Encoding of 123
+ 011 0001 011 0010 011 0011
Encoding of Joanne
+ 100 1010 110 1111 110 0001
+ 110 1110 110 1110 110 0101

Note that these are 7 bit codes

ASCII EXAMPLE 8TH BIT

- In digital systems data is usually organized as bytes or 8 bit of data.
- How about using the 8th bit for an error coding.
 This would help during data transmission, etc.
- Parity bit the extra bit included to make the total number of 1s in the byte either even or odd – called even parity and odd parity

EXAMPLE OF PARITY

- × Consider data
 - + Even Parity
 - + Odd Parity
- × Consider data
 - + Even Parity
 - + Odd Parity

A parity code can be used for ASCII characters and any binary data.

EBCDIC CODE

- The EBCDIC stands for Extended Binary Coded Decimal Interchange Code.
- IBM invented this code to extend the Binary Coded Decimal which existed at that time. All the IBM computers and peripherals use this code.
- It is an 8 bit code and therefore can accommodate 256 characters.

UNICODE

- × Unicode is the newest concept in digital coding.
- In Unicode every number has a unique character.
- Leading technological giants have adopted this code for its uniqueness.