Examples of DFA

Example 1:

Design a FA with $\Sigma = \{0, 1\}$ accepts those string which starts with 1 and ends with 0.

Solution:

The FA will have a start state q0 from which only the edge with input 1 will go to the next state.

In state q1, if we read 1, we will be in state q1, but if we read 0 at state q1, we will reach to state q2 which is the final state. In state q2, if we read either 0 or 1, we will go to q2 state or q1 state respectively. Note that if the input ends with 0, it will be in the final state.

Example 2:

Design a FA with $\Sigma = \{0, 1\}$ accepts the only input 101.

Solution:

In the given solution, we can see that only input 101 will be accepted. Hence, for input 101, there is no other path shown for other input.

Example 3:

Design FA with $\Sigma = \{0, 1\}$ accepts even number of 0's and even number of 1's.

Solution:

This FA will consider four different stages for input 0 and input 1. The stages could be:

Here q0 is a start state and the final state also. Note carefully that a symmetry of 0's and 1's is maintained. We can associate meanings to each state as:

q0: state of even number of 0's and even number of 1's.

q1: state of odd number of 0's and even number of 1's.

q2: state of odd number of 0's and odd number of 1's.

q3: state of even number of 0's and odd number of 1's.

Example 4:

Design FA with $\Sigma = \{0, 1\}$ accepts the set of all strings with three consecutive 0's.

Solution:

The strings that will be generated for this particular languages are 000, 0001, 1000, 10001, in which 0 always appears in a clump of 3. The transition graph is as follows:

Note that the sequence of triple zeros is maintained to reach the final state