
Output Primitives

Deep Prakash Singh



Points and Lines

Line Drawing Algorithms

DDA Algorithm

Bresenham’s Line Algorithm

Midpoint Circle Algorithm



Primitives

 2-D Drawing or a 3-D Object consist of Graphical Primitives 

such as Points, Lines, Circles & Filled Polygons.

 Graphics System or the Application Program convert each 

primitive from its geometric definition into a set of Pixels that 

make up the primitive in the Image Space.

 This Conversion is referred to as SCAN CONVERSION or 

RASTERIZATION.



RASTERIZATION: Process of determining which pixels 

provide the best approximation to a desired line on 

the screen.

SCAN CONVERSION: Combination of rasterization and 

generating the picture in scan line order.



Point
 A point is shown by illuminating a pixel on the screen



Lines

 A line segment is completely defined in terms of its two endpoints. 

 A line segment is thus defined as: Line_Seg = { (x1, y1), (x2, y2) 

 They must start and end accurately.

 Lines should have constant brightness along their length

 Lines should drawn rapidly.



For horizontal, vertical and 45ºlines, the choice of 

raster elements is obvious. This lines exhibit constant 

brightness along the length:



Line Drawing Algorithms

➢ Direct Use of Line Equation

➢ Digital Differential Analyzer (DDA) 

Algorithm

➢ Bresenham’s Line Algorithm 



Direct Use of Line Equation
A simple approach to scan-converting a line is to first scan –

convert P1 and P2 to pixel coordinates (x1, y1) and (x2, y2) respectively by 

using simple line equation. Then set slope m = (y2, y1)/ (x2, x1) and b = y1

– mx1  

 Given Points (x1, y1) and (x2, y2)

 All line drawing algorithm make use of the fundamental equations :

 Line Eqn. y= m. x + b

 Slope m = y2- y1 / x2- x1 

 Y-intercept  b= y1-m x1

 X-interval → ∆x = ∆y/m

 Y- interval → ∆y = m. ∆x

 If m ˃ 1, increment y and find x

 If m ≤ 1, increment x and find y



Steps are as follow:

Start at the pixel for the left-hand end point x1 

Step along the pixels horizontally until we reach right-hand 

end of the line , x2

For each pixel compute the corresponding y value.

Round this value to the nearest integer to select the nearest 

pixel.


