
Output Primitives

Deep Prakash Singh

Points and Lines

Line Drawing Algorithms

DDA Algorithm

Bresenham’s Line Algorithm

Midpoint Circle Algorithm

Primitives

 2-D Drawing or a 3-D Object consist of Graphical Primitives

such as Points, Lines, Circles & Filled Polygons.

 Graphics System or the Application Program convert each

primitive from its geometric definition into a set of Pixels that

make up the primitive in the Image Space.

 This Conversion is referred to as SCAN CONVERSION or

RASTERIZATION.

RASTERIZATION: Process of determining which pixels

provide the best approximation to a desired line on

the screen.

SCAN CONVERSION: Combination of rasterization and

generating the picture in scan line order.

Point
 A point is shown by illuminating a pixel on the screen

Lines

 A line segment is completely defined in terms of its two endpoints.

 A line segment is thus defined as: Line_Seg = { (x1, y1), (x2, y2)

 They must start and end accurately.

 Lines should have constant brightness along their length

 Lines should drawn rapidly.

For horizontal, vertical and 45ºlines, the choice of

raster elements is obvious. This lines exhibit constant

brightness along the length:

Line Drawing Algorithms

➢ Direct Use of Line Equation

➢ Digital Differential Analyzer (DDA)

Algorithm

➢ Bresenham’s Line Algorithm

Direct Use of Line Equation
A simple approach to scan-converting a line is to first scan –

convert P1 and P2 to pixel coordinates (x1, y1) and (x2, y2) respectively by

using simple line equation. Then set slope m = (y2, y1)/ (x2, x1) and b = y1

– mx1

 Given Points (x1, y1) and (x2, y2)

 All line drawing algorithm make use of the fundamental equations :

 Line Eqn. y= m. x + b

 Slope m = y2- y1 / x2- x1

 Y-intercept b= y1-m x1

 X-interval → ∆x = ∆y/m

 Y- interval → ∆y = m. ∆x

 If m ˃ 1, increment y and find x

 If m ≤ 1, increment x and find y

Steps are as follow:

Start at the pixel for the left-hand end point x1

Step along the pixels horizontally until we reach right-hand

end of the line , x2

For each pixel compute the corresponding y value.

Round this value to the nearest integer to select the nearest

pixel.

