
Introduction to Java Data Types and Operations Page 1

INTRODUCTION TO JAVA DATA TYPES AND OPERATIONS

Java has eight data types that are built into the Java language and identified by Java keywords;
they are called the primitive data types.

Java Built-In (“Primitive”) Data Types

Keyword Meaning

byte

Holds an integer value – that is, a whole number with no
fractional part.

short

int

long

char Holds a single keyboard character.

boolean Holds either true or false.

float Holds a floating-point value – that is, one that may have a
fractional part.double

Java allows you to declare variables and write literals in any of these eight data types.

Examples

byte a = 127;

short b = 1_024;

int c = 65_368;

long d = 2_147_483_648L;

char e = 'A';

boolean f = true;

float g = 1E6F;

double h = 1E10;

To manipulate data of these primitive data types, Java provides a number of built-in operators.
Below is a table that lists all but a handful of these operators. The purpose of showing all of these
together is to convey the precedence and association between them. Precedence indicates when
an operator is evaluated relative to operators of a different precedence. In the table, precedence is
indicated by number – an operator of precedence 1 is evaluated first, one of precedence 2 is
evaluated second and so on.

Introduction to Java Data Types and Operations Page 2

Example
Given the expression x/y++, the operator ++ has precedence 1 whereas / has precedence 3.
Thus, ++ evaluates before /.

Association indicates when an operator is evaluated relative to operators of the same precedence
when they are cascaded within the same expression.

Examples

Given the expression x*y/z, both operators * and / have precedence 3. Therefore, the
association rule, left to right, dictates their order of evaluation. * evaluates before /.

On the other hand, = associates right to left so that the expression x=y=z evaluates y=z first.

The operator ++ “cannot be cascaded” even with parentheses so that both expressions x++++
and (x++)++ are syntactically incorrect.

On the other hand, − used as a unary minus operator can be cascaded using parentheses. The
expression −−−x is not syntactically correct whereas −(−(−x))) is correct.

Finally, the order that operators are evaluated can be changed by using parentheses.

Example
The expression (x+y)/z evaluates the + before the / even though it is of a lower precedence.

The Most Common Java Built-In Operators

Symbol Operation Precedence Association

var++ Increment after fetching 1 Cannot be cascaded

var-- Decrement after fetching 1 Cannot be cascaded

++var Increment before fetching 2 Cannot be cascaded

--var Decrement before fetching 2 Cannot be cascaded

+ Unary plus 2 Cascade with () only

- Unary minus 2 Cascade with () only

! Logical NOT 2 Right to left

Introduction to Java Data Types and Operations Page 3

The Most Common Java Built-In Operators

Symbol Operation Precedence Association

* Times 3 Left to Right

/ Divide 3 Left to Right

% Remainder 3 Left to Right

+ Add 4 Left to Right

- Subtract 4 Left to Right

< Less than 6 Cannot be cascaded

<= Less than or equal to 6 Cannot be cascaded

> Greater than 6 Cannot be cascaded

>= Greater than or equal to 6 Cannot be cascaded

== Equal to 7 Left to right

!= Not equal to 7 Left to right

&& Logical AND 11
Left to right

short-circuited

|| Logical OR 12
Left to right

short-circuited

? : Conditional 13 Innermost to outermost

var = expr Store expr into var 14 Right to Left

var *= expr var = var * expr 14 Right to Left

var /= expr var = var / expr 14 Right to Left

var %= expr var = var % expr 14 Right to Left

var += expr var = var + expr 14 Right to Left

var -= expr var = var - expr 14 Right to Left

Introduction to Java Data Types and Operations Page 4

Because of their importance in computer programming, Java has built-in operators that
manipulate character strings.

Example
Java has a built-in operator + that concatenates two strings (i.e. appends one onto another). For

example, this statement prints “Herbert Hoover”:

System.out.println("Herbert" + " " + "Hoover");

In addition to these built-in data types and operators, the Java API contains support for
manipulating strings and data of the eight primitive classes.

Java API Support for Strings and Primitive Data

API Class Name Features

java.lang.String
Allows you to build and manipulate objects that contain
character strings

java.util.Scanner
Allows you to input and scan data of any of these data types,
including String and excepting char

The topics that follow this one in the current collection discuss all of these Java features in detail.
They are designed to be read in any order, or in isolation if you have need to learn one or two
concepts before diving into something else.

