Introduction to Biostatistics

Lesson 1: Basics

Definition

- Seligman: 'Statistics is the science which deals with the methods of collecting, classifying, presenting, comparing and interpreting numerical data collected to throw some light on any sphere of enquiry.
- Horace **Secrist** defines "It is the aggregate of facts affected to markeds extent by the multiplicity of causes,
- numerically expressed,
- enumerated or estimated according to a reasonable standard of accuracy,
- collected in a systematic manner for the predetermined purpose and placed in relation to each other"

Croxton and Cowden: "Statistics is defined as the Collection, Presentation, Analysis and Interpretation of numerical data.

Other definitions for "Statistics"

Frequently used in referral to recorded data

Denotes characteristics calculated for a set of data : sample mean

Biostatistics

- (a portmanteau word made from biology and statistics)
- The application of statistics to a wide range of topics in biology.
- Physiology and Anatomy
- A (Variables) Height and B (variables) = weight
- Pharmacology
- Medicine
- Epidemiological studies
- Genetics

Observation Study

- TT (75) x tt(75) P
- Tt (60) O 100% tall
- Self pollination
- 800 270
- 3 (Tall):1 (Dwarf) phenotype
- 1 tall (TT)homo:2(Tt hetro):1(homo tt)

Biostatistics

It is the science which deals with development and application of the most appropriate methods for the:

Collection of data.

Presentation of the collected data.

- >Analysis and interpretation of the results.
- >Making decisions on the basis of such analysis

Role of statisticians

- To guide the design of an experiment or survey prior to data collection
- To analyze data using proper statistical procedures and techniques
- To present and interpret the results to researchers and other decision makers

Types of data

Constant

Variables

Methods of presentation of data

- 1. Numerical presentation
- 2. Graphical presentation
- 3. Mathematical presentation

1- Numerical presentation

<u>Tabular presentation (simple – complex)</u>

Simple frequency distribution Table (S.F.D.T.)

Name of variable (Units of variable)	Frequency	%
- - Categories -		
Total		

Title

Table (I): Distribution of 50 patients at the surgical department of Alexandria hospital in May 2008 according to their ABO blood groups

Blood group	Frequency	%
Α	12	24
В	18	36
AB	5	10
0	15	30
Total	50	100

Table (II): Distribution of 50 patients at the surgical department of Alexandria hospital in May 2008 according to their age

Age	Frequency	%
(years)		
20-<30	12	24
30-	18	36
40-	5	10
50+	15	30
Total	50	100

Complex frequency distribution Table

Table (III): Distribution of 20 lung cancer patients at the chest department of Alexandria hospital and 40 controls in May 2008 according to smoking

	Lung cancer				Total	
Smoking	Ca	ses	Cor	ntrol	10	lai
	No.	%	No.	%	No.	%
Smoker	15	75%	8	20%	23	38.33
Non smoker	5	25%	32	80%	37	61.67
Total	20	100	40	100	60	100

<u>Complex frequency distribution Table</u>

Table (IV): Distribution of 60 patients at the chest department of Alexandria hospital in May 2008 according to smoking & lung cancer

	Lung cancer			tal		
Smoking	pos	sitive	nega	ative	10	lai
	No.	%	No.	%	No.	%
Smoker	15	65.2	8	34.8	23	100
Non smoker	5	13.5	32	86.5	37	100
Total	20	33.3	40	66.7	60	100

2- Graphical presentation

Graphs drawn using Cartesian coordinates

- Line graph
- Frequency polygon
- Frequency curve
- Histogram
- Bar graph
- Scatter plot

Pie chart

Statistical maps

Line Graph

Maternal mortality rate of (country), 1960-2000

Frequency polygon

Age	Sex		Mid-point of interval
(years)	Males	Females	
20 -	3 (12%)	2 (10%)	(20+30) / 2 = 25
30 -	9 (36%)	6 (30%)	(30+40) / 2 = 35
40-	7 (8%)	5 (25%)	(40+50) / 2 = 45
50 -	4 (16%)	3 (15%)	(50+60) / 2 = 55
60 - 70	2 (8%)	4 (20%)	(60+70) / 2 = 65
Total	25(100%)	20(100%)	

Frequency polygon

Ago	S		
Ауе	М	F	
20-	(12%)	(10%)	25
30-	(36%)	(30%)	35
40-	(8%)	(25%)	45
50-	(16%)	(15%)	55
60-70	(8%)	(20%)	65

Distribution of 45 patients at (place), in (time) by age and sex

Frequency curve

Distribution of a group of cholera patients by age

Age (years)	Frequency	%
25-	3	14.3
30-	5	23.8
40-	7	33.3
45-	4	19.0
60-65	2	9.5
Total	21	100

Distribution of 100 cholera patients at (place), in (time) by age

Blood Group	Frequency	%
А	12	24
В	18	36
АВ	5	10
0	15	30

Blood Group Frequency

Combo: Stacked Area-Cluster Colum

Bar chart

Pie Chart

Doughnut chart

BLOOD GROUP FREQUENCY DISTRIBUTION

A B AB O

How to determine the appropriate statistical test?

- 1. Specify the biological question you are asking.
- 2. Put the question in the form of a biological null hypothesis and alternate hypothesis.
- 3. Put the question in the form of a statistical null hypothesis and alternate hypothesis.
- 4. Determine which variables are relevant to the question.
- 5. Determine what kind of variable each one is.
- 6. Design an experiment that controls or randomizes the confounding variables.
- 7. Based on the number of variables, the kinds of variables, the expected fit to the parametric assumptions, and the hypothesis to be tested, choose the best statistical test to use.
- 8. If possible, do a power analysis to determine a good sample size for the experiment.
- 9. Do the experiment.
- Examine the data to see if it meets the assumptions of the statistical test you chose (primarily normality and homoscedasticity for tests of measurement variables). If it doesn't, choose a more appropriate test.
- 11. Apply the statistical test you chose, and interpret the results.
- 12. Communicate your results effectively, usually with a graph or table.

Introduction to Biostatistics

Lesson 1: Basics

Definition

- Seligman: 'Statistics is the science which deals with the methods of collecting, classifying, presenting, comparing and interpreting numerical data collected to throw some light on any sphere of enquiry.
- Horace **Secrist** defines "It is the aggregate of facts affected to markeds extent by the multiplicity of causes,
- numerically expressed,
- enumerated or estimated according to a reasonable standard of accuracy,
- collected in a systematic manner for the predetermined purpose and placed in relation to each other"

Croxton and Cowden: "Statistics is defined as the Collection, Presentation, Analysis and Interpretation of numerical data.

Other definitions for "Statistics"

Frequently used in referral to recorded data

Denotes characteristics calculated for a set of data : sample mean

Biostatistics

- (a portmanteau word made from biology and statistics)
- The application of statistics to a wide range of topics in biology.
- Physiology and Anatomy
- A (Variables) Height and B (variables) = weight
- Pharmacology
- Medicine
- Epidemiological studies
- Genetics

Observation Study

- TT (75) x tt(75) P
- Tt (60) O 100% tall
- Self pollination
- 800 270
- 3 (Tall):1 (Dwarf) phenotype
- 1 tall (TT)homo:2(Tt hetro):1(homo tt)

Biostatistics

It is the science which deals with development and application of the most appropriate methods for the:

Collection of data.

Presentation of the collected data.

- >Analysis and interpretation of the results.
- >Making decisions on the basis of such analysis

Role of statisticians

- To guide the design of an experiment or survey prior to data collection
- To analyze data using proper statistical procedures and techniques
- To present and interpret the results to researchers and other decision makers

Types of data

Constant

Variables

Methods of presentation of data

- 1. Numerical presentation
- 2. Graphical presentation
- 3. Mathematical presentation

1- Numerical presentation

<u>Tabular presentation (simple – complex)</u>

Simple frequency distribution Table (S.F.D.T.)

Name of variable (Units of variable)	Frequency	%
- - Categories -		
Total		

Title

Table (I): Distribution of 50 patients at the surgical department of Alexandria hospital in May 2008 according to their ABO blood groups

Blood group	Frequency	%
Α	12	24
В	18	36
AB	5	10
0	15	30
Total	50	100

Table (II): Distribution of 50 patients at the surgical department of Alexandria hospital in May 2008 according to their age

Age	Frequency	%
(years)		
20-<30	12	24
30-	18	36
40-	5	10
50+	15	30
Total	50	100

Complex frequency distribution Table

Table (III): Distribution of 20 lung cancer patients at the chest department of Alexandria hospital and 40 controls in May 2008 according to smoking

	Lung cancer				Total	
Smoking	Cases		Control		ισιαι	
	No.	%	No.	%	No.	%
Smoker	15	75%	8	20%	23	38.33
Non smoker	5	25%	32	80%	37	61.67
Total	20	100	40	100	60	100

<u>Complex frequency distribution Table</u>

Table (IV): Distribution of 60 patients at the chest department of Alexandria hospital in May 2008 according to smoking & lung cancer

	Lung cancer				Total	
Smoking	positive		negative		TOLAI	
	No.	%	No.	%	No.	%
Smoker	15	65.2	8	34.8	23	100
Non smoker	5	13.5	32	86.5	37	100
Total	20	33.3	40	66.7	60	100

2- Graphical presentation

Graphs drawn using Cartesian coordinates

- Line graph
- Frequency polygon
- Frequency curve
- Histogram
- Bar graph
- Scatter plot

Pie chart

Statistical maps

Line Graph

Maternal mortality rate of (country), 1960-2000

Frequency polygon

Age	Se	ex	Mid-point of interval	
(years)	Males	Females		
20 -	3 (12%)	2 (10%)	(20+30) / 2 = 25	
30 -	9 (36%)	6 (30%)	(30+40) / 2 = 35	
40-	7 (8%)	5 (25%)	(40+50) / 2 = 45	
50 -	4 (16%)	3 (15%)	(50+60) / 2 = 55	
60 - 70	2 (8%)	4 (20%)	(60+70) / 2 = 65	
Total	25(100%)	20(100%)		

Frequency polygon

۸do	S		
Ауе	М	F	
20-	(12%)	(10%)	25
30-	(36%)	(30%)	35
40-	(8%)	(25%)	45
50-	(16%)	(15%)	55
60-70	(8%)	(20%)	65

Distribution of 45 patients at (place), in (time) by age and sex

Frequency curve

Distribution of a group of cholera patients by age

Age (years)	Frequency	%
25-	3	14.3
30-	5	23.8
40-	7	33.3
45-	4	19.0
60-65	2	9.5
Total	21	100

Distribution of 100 cholera patients at (place), in (time) by age

Blood Group	Frequency	%
А	12	24
В	18	36
АВ	5	10
0	15	30

Blood Group Frequency

Combo: Stacked Area-Cluster Colum

Bar chart

Pie Chart

Doughnut chart

BLOOD GROUP FREQUENCY DISTRIBUTION

A B AB O

How to determine the appropriate statistical test?

- 1. Specify the biological question you are asking.
- 2. Put the question in the form of a biological null hypothesis and alternate hypothesis.
- 3. Put the question in the form of a statistical null hypothesis and alternate hypothesis.
- 4. Determine which variables are relevant to the question.
- 5. Determine what kind of variable each one is.
- 6. Design an experiment that controls or randomizes the confounding variables.
- 7. Based on the number of variables, the kinds of variables, the expected fit to the parametric assumptions, and the hypothesis to be tested, choose the best statistical test to use.
- 8. If possible, do a power analysis to determine a good sample size for the experiment.
- 9. Do the experiment.
- Examine the data to see if it meets the assumptions of the statistical test you chose (primarily normality and homoscedasticity for tests of measurement variables). If it doesn't, choose a more appropriate test.
- 11. Apply the statistical test you chose, and interpret the results.
- 12. Communicate your results effectively, usually with a graph or table.