Normal, Excited and Ionized Atoms

- \succ Hydrogen atom has a single electron.
- ➤ When this electron lies in the innermost K orbit (n = 1), the atom is said to be in normal state.
- \succ Normal state is also called ground state.
- \succ The electron in normal state remains stable.
- The atom is said to be excited if its electron is forced into an outer orbit.
- \succ The electron absorbs energy in this case.
- ➤ The atom is said to be ionized when its electron is removed out from the atom completely.
- \succ The electron emits energy in ionized state.
- The radius r_0 , velocity v_0 and frequency f_0 of hydrogen atom in ground state (n = 1) are obtained using Eqs. 2.4, 2.5 and 2.7
- > These values are $r_0 = 0.53$ Å, $v_0 = 2.2 \times 106$ m/s and
- \succ f_o = 0.66 × 10 m/s²

> De Broglie Wave:

The modern concept of atom also considers the concept of wave nature of electron.

- According to this concept a particle (say electron) of mass m moving with velocity v is associated with a wave propagating in the direction of moving particle.
- This wave is known as de Broglie wave or matter wave.
- \searrow Wavelength λ of such a wave associated with the particle is given by

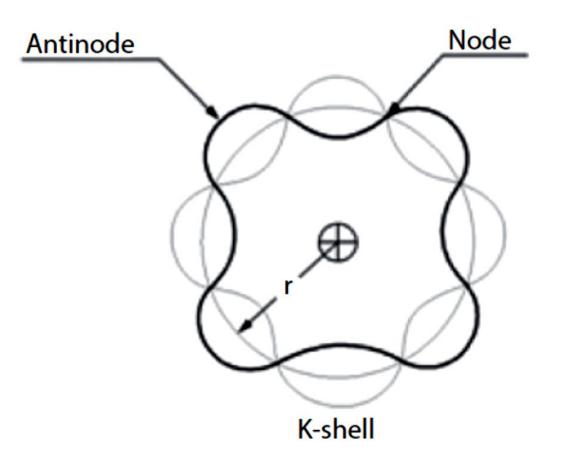
$$\lambda = \frac{h}{mv} \tag{2.11}$$

Velocity of electron accelerated by a potential difference of V volts can be obtained from

$$eV = \frac{1}{2}mv^{2}, \text{ or } v = \frac{\sqrt{2eV}}{m}$$
$$mv = \sqrt{2meV}$$
(2.12)

> Wavelength of Electron Wave:

Therefore, wavelength of electron wave in Eq. 2.11 becomes


$$\lambda = \frac{h}{\sqrt{2meV}}$$

> On substituting h = 6.62×10^{-34} Js, m = 9.1×10^{-31} kg, and e = 1.602×10^{-19} C, we get

$$\lambda = \frac{12.25}{\sqrt{V}} \mathring{A}$$
(2.13)

Concept of Standing Wave:

- Modern concept of atomic model, also known as wavemechanical model, assumes behaviour of electron as a standing or stationary wave.
- Such a wave will establish when the length of orbit is a whole number multiple of electron wavelength as shown in Fig.
- \blacktriangleright Hence $2\pi r = n\lambda = nh/mv$
- > Or $mvr = nh/2\pi$ for n = 1, 2, 3, ... etc. (2.14)
- Here r is radius of the circular orbit, mvr is angular momentum of electron as a particle.

Wave nature of electron in K-shell of an atom showing stationary wave

✓ Characteristics of standing waves.

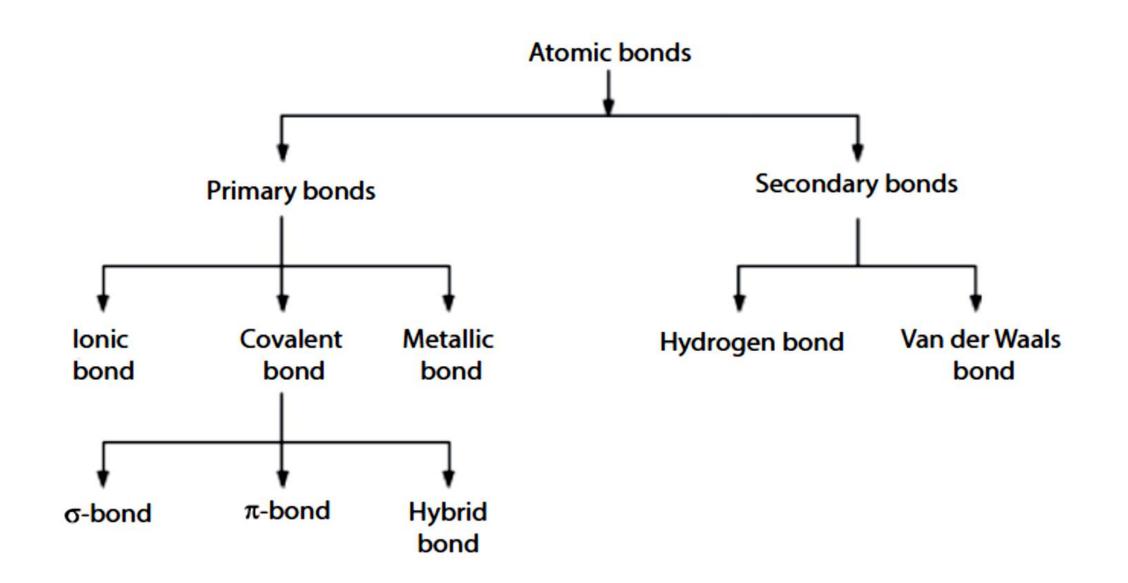
- The stationary waves have their nodes and antinodes.
- Motion is practically zero at nodes, and there are almost no charge on them at these points.
- The amount of charge is maximum at antinodes.
- Whole of electron charge and mass is uniformly distributed around nucleus of the atom.
- The wavelength of electron is of the order of interatomic spacing in the crystals.
- A beam of electron incident on a crystal shows diffraction pattern thus depicting concept of wave nature of electron.

- ✓ Example: Calculate the minimum uncertainty in determining the position of a particle when the uncertainty in its momentum does not exceed 10⁻²⁷ kg ms⁻¹.
- ✓ **Solution**: From Eq. 2.11,
- $\checkmark (\Delta p)(\Delta x) > h/2\pi$
- ✓ Given is the value of $(\Delta p) \le 10^{-27}$ kg ms⁻¹, and taking h = 6.626 × 10^{-34} Js, the uncertainty in position (displacement) of the particle will be obtained from h

$$\Delta x \ge \frac{h}{2\pi . (\Delta p)}$$
$$\ge \frac{6.626 \times 10^{-34}}{2\pi (10^{-27})}$$
$$\ge 1.054 \times 10^{-7} \text{ metre}$$

Thus the minimum uncertainty = 1.054×10^{-7} m.

✓ Electron Configuration:


Element	Symbol	Configuration	Atomic Number
Hydrogen	Н	ls ¹	1
Nitrogen	N	$1s^2 2s^2 2p^3$	7
Silicon	Si	$1s^2 2s^2 2p^6 3s^2 3p^2$	14
Titanium	Ti	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$	22
Copper	Cu	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$	29
Molybdenum	Мо	$\frac{1s^2}{4d^5} \frac{2s^2}{5s^1} \frac{2p^6}{5s^1} \frac{3s^2}{5s^1} \frac{3p^6}{3d^{10}} \frac{3d^{10}}{4s^2} \frac{4s^2}{4p^6} \frac{4p^6}{5s^1}$	42
Antimony	Sb	$\frac{1s^2}{5p^3} 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^3$	51
Neutral iron	Fe	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$	26
Ferrous ion	Fe ²⁺	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$	24
Ferric ion	Fe ³⁺	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$	23

BONDS IN SOLIDS

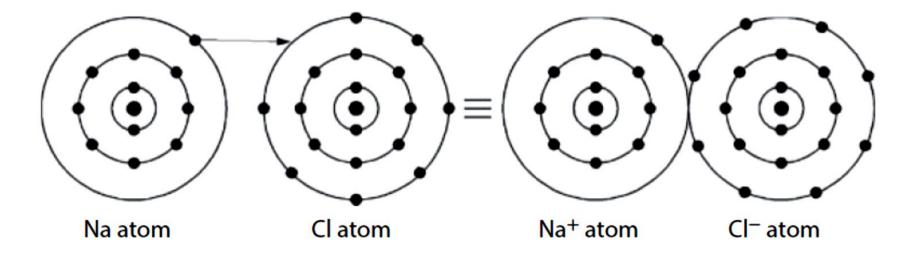
BONDS IN SOLIDS

- ➢ If we try to break a material, it requires application of some breaking force.
- ➤ The magnitude of applied force varies widely for different materials.
- ➤ A chalk may break by applying a small force; timber may require application of medium magnitude of force, but steel necessitates application of substantial external force.
- \succ One may think as to why is it so?
- \succ In fact, atoms in the solids are held together by internal forces.
- These forces are known as bonding forces or atomic bonding forces or chemical bonding forces.

- ➢ Primary bonds are stronger and more stable than the secondary bonds.
- > They are further classified into following types.
- a. Ionic bond
- b. Covalent bond
- c. Metallic bond
- ✓ Out of these three bonds, the ionic bonds are strongest and the metallic bonds are weakest.
- ✓ The hardness, strength and other properties are imparted to the solids due to primary bonds.
- \checkmark Mostly solids have primary bond of one kind or the other.
- ✓ Examples of primary bonded materials are ceramics (refractories) such as alumina (Al₂O₃) and magnesia (MgO); hydrogen, diamond, silicon, plastics etc; and ferrous and non-ferrous metals.
- \checkmark Primary bonds are interatomic in nature.

- \succ The secondary bonds are further classified into two types.
- a. Hydrogen bond
- b. Van der Waals bond
- Secondary bonds are intermolecular.
- ≻ Gases and liquids, generally, form such bonds.
- \succ They are feeble and less stable.
- ≻ Van der Waals bonds are the weakest amongst all known bonds.
- > Secondary bonds may also be classified as follows.
- a. Dipole bond
- b. Dispersion bond

- Both the hydrogen and Van der Waals bond, develop dipole in their formation.
- \succ Hence they are also referred to as dipole bonds.
- ➤ Van der Waals bond is known as dispersion bond due to the dispersing nature of its dipoles.


Ionic Bond

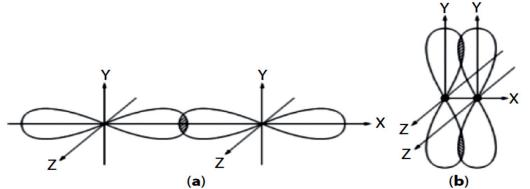
- \succ Ionic bonds are formed between two oppositely charged ions.
- These are produced by transfer of electrons from one atom to another.
- An attractive force between a positive and a negative ion develops when they are brought in close proximity.
- These ions are formed when the atoms involved lose or gain electrons to stabilize their outer shell configurations.
- Let us consider the case of sodium chloride (NaCl) which is ionically bonded.
- The sodium atom has a single electron in its outer orbit.
- This electron transfers to join the seven electrons in the outer orbit of the chlorine atom.

Ionic Bond

•This atomic interaction involving transfer of electron from one atom to another leads to formation of ions which are held together by Coulomb's electrostatic attraction.

 \succ The bonding process is shown in following fig.

Bonds in Solids


✓ Covalent Bonds :

- \checkmark A covalent bond is formed when a pair of electrons are shared by several
- \checkmark atoms.
- \checkmark As a result of this sharing, their energies are lowered.
- ✓ Stable covalent bonds are formed between many non-metallic elements as the atoms of these elements usually posses half filled outer electron orbit.
- \checkmark Such elements are hydrogen, carbon, nitrogen, oxygen and chlorine etc.
- ✓ Examples. Elements like silicon, germanium, arsenic and selenium etc. form partly covalent and partly metallic bond.
- ✓ Covalent bonds are also found in organic compounds such as alcohol, benzene, chloroform and turpentine etc.
- ✓ Polymers, rubbers, elastomers, glasses, potteries, brick, Mo, Ta and high strength fibers are also covalent bonded.

Bonds in Solids

✓ Types of Covalent Bonds :

- ✓ Covalent bonds may be further classified into following three kinds.
- 1. Sigma (σ) bond
- 2. Pi (π) bond
- 3. Hybrid bond
- ✓ End to end overlap of p sub-orbits gives rise to σ -bond.
- ✓ Bonding in Sulphur, selenium and tellurium are the examples.
- π-bonds are formed when overlap of p sub-orbits are lateral. Bond in oxygen molecule is the example of this kind.
- \checkmark Schematic diagrams are shown in Fig

Covalent bond of type (a) σ -bond, and (b) π -bond.

Bonds in Solids

\checkmark Comparison Between Sigma (σ) Bond and Pi (π) Bond

S.No.	Characteristics	Sigma (σ) bond	Pi (π) bond
1.	Formation due to	Axial overlapping of orbitals	Lateral overlapping of orbitals
2.	Extent of overlapping	Greater	Smaller
3.	Orbitals involved and their axes	<i>p</i> along the same axis	<i>p</i> only at an angle
4.	Strength	Stronger	Comparatively weaker
5.	Rotation of atoms	Freely around the bond	No