Consider the function y = f(x), where x is known as argument and y is called entry. Here, the values of the argument are at equal intervals

Forward Difference:

If the above differences are denoted by the forward difference operator Δ then these differences are known as forward differences

$$\Delta f(a) = f(a+h) - f(a)$$

$$\Delta f(a+h) = f(a+2h) - f(a+h)$$

$$\Delta f(a+2h) = f(a+3h) - f(a+2h)$$
.....
$$\Delta f(a+n-1h) = f(a+nh) - f(a+n-1h)$$
In general $\Delta f(x) = f(x+h) - f(x)$

where Δ is an operator and is called a forward difference operator and h is known as the interval of differences.

First forward difference
$$\Delta f(a) = f(a+h) - f(a)$$
(1)

Third Forward difference:

$$\Delta^3 f(a) = \Delta[\Delta^2 f(a)] \quad \dots (3)$$

Putting the value of $\Delta^2 f(a)$ from (2) in (3), we get

$$\Delta^3 f(a) = \Delta [f(a+2h) - 2f(a+h) + f(a)]$$

$$= \Delta f(a+2h) - 2\Delta f(a+h) + \Delta f(a)$$

$$= [f(a+3h) - f(a+2h)] - 2[f(a+2h) - f(a+h)] + f(a+h) - f(a)$$

$$= f(a+3h) - 3f(a+2h) + 3f(a+h) - f(a)$$

Similarly
$$\Delta^n f(a) = \Delta^{n-1} \Delta f(a) = \Delta^{n-1} [f(a+h) - f(a)]$$

$$\Delta^n f(a) = \Delta^{n-1} f(a+h) - \Delta^{n-1} f(a)$$

Remark:

- 1) $\Delta f(a)$ mean f(a) is to be subtracted from next entry.
- 2) The difference f(a + h) f(a) is denoted by placing Δ before the second entry.
- 3) $\Delta^2 is$ not the square of the operator Δ but Δ^2 means Δ operated by Δ

Table for forward difference:

Argu	Entry	First forward	2nd forward	3rd	4th
ment	f(x)	difference	Difference	forward	forward
x		$\Delta f(x)$	$\Delta^2 f(x)$	difference	difference
				$\Delta^3 f(x)$	$\Delta^4 f(x)$
а	f(a)				
		f(a+h)-f(a)			
. 7	C(+ 1)	$= \Delta f(a)$	$\Delta f(a+h) - \Delta f(a)$		
a+h	f(a+h)	f(a+2h)			
		-f(a+h)	$=\Delta^2 f(a)$	$\Delta^2 f(a+h)$	
a+2h	f(a+2h)	$= \Delta f(a+h)$		$-\Delta^2 f(a)$	
0	J (u = 1.9)			$=\Delta^3 f(a)$	
a+3h	f(a+3h)	f(a+3h)		<i>y</i> (~)	$\Delta^3 f(a+h)$
	$\int (\alpha + 3ii)$	-f(a+2h)	$\Delta f(a+2h)$	$\Delta^2 f(a+2h)$	$-\Delta^3 f(a)$
		$= \Delta f(a+2h)$	$-\Delta f(a+h)$		$= \Delta^4 f(a)$
a+4h	<i>f</i> (<i>a</i> +4 <i>h</i>)	<u></u>	$=\Delta^2 f(a+h)$	$-\Delta^2 f(a+h)$	3 ()
u + Th	$\int (\alpha + \pi i)$	f(a+4h)		=	
		-f(a+3h)	$\Delta f(a+3h)$	$\Delta^3 f(a+h)$	
		$= \Delta f(a+3h)$	$-\Delta f(a+2h)$		
		Δy (α + 3n)	$= \Delta^2 f(a+2h)$		

Problem: Construct a forward difference table and find $\Delta^4 f(1)$ if f(1) = 1, f(2) = 3, f(3) = 8, f(4) = 15, f(5) = 25

Solution:

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
1	1				
2	3	2			
3	8	5	3		
4	15	7	2	-1	
5	25	10	3	1	2

From the table we have $\Delta^4 f(1) = 2$.

Backward difference operator:

If the difference f(x) - f(x-h) is denoted by the backward difference operator ∇ then the difference $\nabla f(x) = f(x) - f(x-h)$ is called backward difference.

The operator ∇ is called as backward difference operator. It is to be noted that it is only the notation which changes and not the difference $y_1 - y_0 = \Delta y_0 = \nabla y_1$

2nd Backward Difference:

$$\nabla^{2} f(x) = \nabla [f(x)] = \nabla [f(x) - f(x-h)]$$

$$= \nabla f(x) - \nabla f(x-h)$$

$$= [f(x) - f(x-h)] - [f(x-h) - f(x-2h)]$$

$$= f(x) - 2f(x-h) + f(x-2h)$$

3rd Backward Difference:

$$\nabla^3 f(x) = \nabla^2 [\nabla f(x)] = \nabla^2 [f(x) - f(x - h)]$$

$$= \nabla^2 f(x) - \nabla^2 f(x-h)$$

$$= f(x) - 2f(x-h) + f(x-2h) - [f(x-h) - 2f(x-h) + f(x-3h)]$$

$$= f(x) - 3f(x-h) + 3f(x-2h) - f(x-3h)$$

In general,

$$\nabla^{n} f(x) = \nabla^{n-1} [\nabla f(x)] = \nabla^{n-1} [f(x) - f(x-h)]$$

$$= \nabla^{n-1} f(x) - \nabla^{n-1} f(x-h)$$

Remark: The backward difference f(a) - f(a-h) is denoted by placing backward difference operator ∇ before the 1st entry.

Table for backward difference.

Argu	Entry	First forward	2nd forward	3rd forward	4th forward
ment	f(x)	difference	Difference	difference	difference
x		$\nabla f(x)$	$\nabla^2 f(x)$	$\nabla^3 f(x)$	$\nabla^4 f(x)$
а	f(a)				
		f(a+h)-f(a)			
a+h	<i>f</i> (<i>a</i> + <i>h</i>)	=	$\nabla f(a+2h) - \nabla f(a+1)$		
		$\nabla f(a+h)$			
a+2h	<i>f</i> (<i>a</i> +2 <i>h</i>)	f(a+2h)	$= \nabla^2 f(a+2h)$	$\nabla^2 f(a+3h)$	
$ \alpha ^2 2\pi$	$\int (\alpha + 2\pi)$	-f(a+h)		$-\nabla^2 f(a+2h)$	
		=		$= \nabla^3 f(a+3h)$	
a+3h	f(a+3h)	$\nabla f(a+2h)$		J ()	$\nabla^3 f(a+4h)$
u Jh	$\int (\alpha + 3n)$		$\nabla f(a+3h)$	$\nabla^2 f(a+4h)$	$-\nabla^3 f(a+3h)$
		f(a+3h)	$-\nabla f(a+2h)$	$-\nabla^2 f(a+3h)$	=
		-f(a+2h)	$= \nabla^2 f(a+3h)$		$\nabla^4 f(a+4h)$
a+4h	<i>f</i> (<i>a</i> +4 <i>h</i>)	$= \nabla f(a+3h)$		$= \nabla^3 f(a+4h)$	
			$\nabla f(a+4h)$		
		f(a+4h)	$-\nabla f(a+3h)$		
		-f(a+3h)	$=\nabla^2 f(a+4h)$		
		$= \nabla f(a+4h)$			

Problem: Construct a backward difference table for f(1) = 4, f(2) = 8, f(3) = 2, f(4) = 18, f(5) = 36 find $\nabla^5 f(5)$.

Solution:

X	f(x)	$\nabla f(x)$	$\nabla^2 f(x)$	$\nabla^3 f(x)$	$\nabla^4 f(x)$
1	4				
2	8	4			
3	12	4	0		
4	18	6	2	-2	
5	36	18	12	10	12

From the table, we have $\nabla^5 f(5) = 12$.

Shifting operator E:

$$Ef(x) = f(x+h)$$
(1)

The operator E is called the shifting operator E.

$$\Delta f(x) = f(x+h) - f(x) \Rightarrow \Delta f(x) = Ef(x) - f(x)$$
 By (1)
 $\Rightarrow f(x) = \Delta f(x) + f(x) \Rightarrow f(x) = (0+1)f(x)$
 $\Rightarrow E = \Delta + 1$ or $\Delta = E - 1$

Again,
$$E^2 f(x) = EEf(x) = Ef(x+h) = f(x+2h)$$

 $E^3 f(x) = EE^2 f(x) = Ef(x+2h) = f(x+3h)$
 $E^4 f(x) = EE^3 f(x) = Ef(x+3h) = f(x+4h)$

$$E^n f(x) = f(x + nh)$$

Similarly, we define $E^{-1} f(x) = \Delta f(x-h)$ In general $E^{-n} f(x) = f(x-nh)$

Properties of Δ and E.

- (1) Δ and E are commutative with regard to constant
 - (1) $\Delta[af(x)] = a\Delta f(x)$
 - (2) E[af(x)] = aEf(x)

Proof: (1)
$$\Delta[af(x)] = af(x+h) - af(x)$$

= $a[f(x+h) - f(x)] = a\Delta f(x)$

(2)
$$E[af(x)] = af(x+h) = aEf(x)$$

(2) Commutative property of Δ and E.

$$E \Delta f(x) = \Delta E f(x)$$

Proof:
$$E \Delta f(x) = E[f(x+h) - f(x)] = Ef(x+h) - Ef(x)$$

= $f(x+2h) - f(x+h)$(1)
 $\Delta E f(x) = \Delta f(x+h) = f(x+2h) - f(x+h)$(2)

From (1) (2)
$$\mathbb{E} \Delta f(x) = \Delta E f(x)$$
.

25

(3) Associative property.

 Δ and E are associative

$$(\Delta E)\Delta f(x) = \Delta(E\Delta)f(x)$$

(4) Distributive property: Δ and E are distributive

(1)
$$\Delta[f(x) + \phi(x)] = \Delta f(x) + \Delta \phi(x)$$

(2)
$$E[f(x) + \phi(x)] = Ef(x) + E\phi(x)$$

Proof:

$$\Delta[f(x) + \phi(x)] = [f(x+h) + \phi(x+h)] - [f(x) + \phi(x)]$$
$$= [f(x+h) - f(x)] + [\phi(x+h) - \phi(x)]$$
$$= \Delta f(x) + \Delta \phi(x)$$

$$E[f(x) + \phi(x)] = f(x+h) + \phi(x+h) = E[f(x) + E\phi(x)]$$

(5) Law of indices

(1)
$$\Delta^m \Delta^n f(x) = \Delta^{m+n} f(x)$$

(2)
$$E^m E^n f(x) = E^{m+n} f(x)$$

(6) Let *k* be any constant then

(1)
$$\Delta k = 0$$

(2)
$$Ek = k$$

Proof: Let k = f(x), k = f(x+h)

(1)
$$\Delta k = \Delta f(x) = f(x+h) - f(x) = k - k = 0$$

(2)
$$E(k) = Ef(x) = f(x+h) = k$$

Central Difference operator: Central difference operator is defined as

$$\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$$

$$\delta f(x) = E^{\frac{1}{2}} f\left(x\right) - E^{-\frac{1}{2}} f\left(x\right) \qquad \left[\because E^{n} f(x) = f(x + nh)\right]$$

$$\delta f(x) = \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right) f(x)$$

$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$

	D. CC	7D 11
Central	Difference	Table:

Argument x	Entry y	central	2nd central Difference δ²y	3rd central difference $\delta^3 y$	4th central difference $\delta^4 y$
а	y_0				
a+h	y_1	$\delta y_{_{1/2}}$	$\delta^2 y_1$		
a+2h	y_2	$\delta y_{3/2}$	$\delta^2 y_2$	$\delta^3 y_{3/2}$	$\delta^4 y_2$
a+3h	y_3	$\delta y_{5/2}$	$\delta^2 y_3$	$\delta^3 y_{5/2}$	
a+4h	<i>y</i> ₄	$\delta y_{7/2}$	- 73	5,2	

Problem: Evaluate $\delta^4 f(2)$, given f(0) = 8, f(1) = 12, f(2) = 20, f(3) = 34, f(4) = 60.

Solution:

Argument	Entry		2nd Difference	3rd difference	4th difference
0	8				
1	12	$\delta y_{1/2} = 4$	$\delta^2 y_1 = 4$	$\delta^3 y_{3/2} = 2$	
2	20	$\delta y_{3/2} = 8$	$\delta^2 y_2 = 6$	$\delta^3 y_{5/2} = 6$	$\delta^4 y_2 = 4$
3	34	$\delta y_{5/2} = 14$	$\delta^2 y_3 = 12$	- 5,2	
4	60	$\delta y_{7/2} = 26$	- /3		

Thus: $\delta^4 f(2) = 4$.

Averaging operator: The averaging operator is defined as

$$\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right]$$

Relation between different operators:

Relation between averaging operator and central difference operator δ :

$$\mu^2 = 1 + \frac{\delta^2}{4}$$

Proof:
$$\mu f(x) = \frac{1}{2} \left[E^{\frac{1}{2}} f(x) + E^{-\frac{1}{2}} f(x) \right] = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right] f(x)$$

$$\mu = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right]$$

Now
$$\mu^2 f(x) = \frac{1}{4} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right]^2 f(x)$$

$$= \frac{1}{4} \left[\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}} \right)^2 + 4 \right] f(x) = \frac{1}{4} \left[(\delta)^2 + 4 \right] f(x)$$

$$\Rightarrow \mu^2 = 1 + \frac{\delta^2}{4}$$

Relation between E, δ and μ

We know that
$$\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right) = E^{\frac{1}{2}}f(x) - E^{-\frac{1}{2}}f(x)$$

 $\Rightarrow \delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$ (1)

And
$$\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right]$$

 $\mu f(x) = \frac{1}{2} \left(E^{\frac{1}{2}} f(x) + E^{-\frac{1}{2}} f(x) \right)$
 $2\mu = E^{\frac{1}{2}} + E^{-\frac{1}{2}}$ (2)

Adding (1) & (2)
$$\delta + 2\mu = 2E^{\frac{1}{2}}$$

Or $E^{\frac{1}{2}} = \mu + \frac{\delta}{2}$

Relation between ∇ and E^{-1}

(1)
$$\nabla = 1 - E^{-1}$$

(2)
$$E\nabla = \nabla E = \Delta$$

Solution: (1)
$$\nabla f(a) = f(a) - f(a-h)$$
(I)

&
$$E^{-1}f(a) = f(a-h)$$
(II)

Putting the value of f(a-h) from (II) in (I), we get

$$\Delta f(a) = f(a) - E^{-1} f(a) = (1 - E^{-1}) f(a)$$

$$\Rightarrow \nabla = 1 - E^{-1}$$

$$\Rightarrow E^{-1} = 1 - \nabla$$

(2)
$$\nabla f(a) = E[f(a) - f(a-h)] = Ef(a) - E\delta(a-h)$$

= $Ef(a) - f(a) = (E-1)f(a) = \Delta f(a)$

so
$$E\nabla = \Delta$$
....(1)

$$\nabla Ef(a) = \nabla f(a+h) = f(a+h) - f(a) = \Delta f(a)$$

so
$$\nabla E = \Delta$$
....(2)

so from (1) and (2) $E\nabla = \nabla E = \Delta$

Relation between Δ and δ .

$$\Delta = \frac{\delta^2}{2} \pm \delta \sqrt{1 + \frac{\delta^2}{4}}$$

Solution: $\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$

$$\Rightarrow \delta f(x) = E^{\frac{1}{2}} f(x) - E^{-\frac{1}{2}} f(x)$$

$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$

Squaring we get $\delta^2 = E + E^{-1} - 2$

$$E\delta^2 = E^2 + 1 - 2E = (E - 1)^2$$

$$(1+\Delta)\delta^2 = \Delta^2$$

$$\Delta^2 - \delta^2 \Delta - \delta^2 = 0$$

$$\Delta = \frac{\delta^2 \pm \sqrt{\delta^4 + 4\delta^2}}{2}$$

$$\Rightarrow \Delta = \frac{\delta^2}{2} \pm \delta \sqrt{1 + \frac{\delta^2}{4}}$$

Relation between Δ and δ .

$$\Delta = \frac{\delta^2}{2} \pm \delta \sqrt{1 + \frac{\delta^2}{4}}$$

where δ and Δ are the central difference and forward difference operator.

Proof:
$$\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$$

 $\Rightarrow \delta f(x) = E^{\frac{1}{2}} f(x) - E^{-\frac{1}{2}} f(x)$
 $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Squaring, we get $\delta^2 = E + E^{-1} - 2$
 $E\delta^2 = E^2 + 1 - 2E$
 $= (E - 1)^2$
 $(1 + \Delta)\delta^2 = \Delta^2$
 $\Delta^2 - \delta^2 \Delta - \delta^2 = 0$
So $\Delta = \frac{\delta^2 \pm \sqrt{\delta^4 + 4\delta^2}}{2}$
 $\Rightarrow \Delta = \frac{\delta^2}{2} \pm \delta \sqrt{1 + \frac{\delta^2}{4}}$

Relation between Δ, ∇, μ **and** δ : $\mu\delta = \frac{1}{2}(\Delta + \nabla)$

Solution: we know that

$$\delta f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right) \right]$$

$$\Rightarrow \frac{1}{2} \left[E^{\frac{1}{2}} f(x) - E^{-\frac{1}{2}} f(x) \right]$$

$$\mu = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right]$$

But
$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$

On multiplying μ and δ , we get

$$\mu\delta = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right] \left[E^{\frac{1}{2}} - E^{-\frac{1}{2}} \right]$$
$$= \frac{1}{2} \left[E - E^{-1} \right]$$
$$= \frac{1}{2} [1 + \Delta + \nabla - 1] = \frac{1}{2} [\Delta + \nabla]$$

Relation between D and Δ .

$$D = \frac{1}{h} \left[\Delta - \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 + \dots \right]$$

Solution: Ef(x) = f(x+h)

$$= \left[f(x) + hf'(x) + \frac{h^2}{2!} f''(x) + \dots \right]$$

$$= \left[f(x) + hDf(x) + \frac{h^2}{2!} D^2 f(x) + \dots \right]$$

$$= \left[1 + hD + \frac{h^2D^2}{2} + \dots \right] f(x)$$

$$Ef(x) = e^{hD} f(x) \quad \left[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \right]$$

$$E = e^{hD}$$

$$\log E = \log e^{hD}$$

$$\log(1+\Delta) = hD \log e^{e}$$

$$\log(1+\Delta) = hD$$

$$D = \frac{1}{h}\log(1+\Delta)$$

$$D = \frac{1}{h}\left[\Delta - \frac{\Delta^{2}}{2} + \frac{\Delta^{3}}{3} + \dots\right]$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

Relation between Δ, ∇, μ , δ and D.

$$hD = \log(1+\Delta) = -\log(1-\nabla) = \sin h^{-1}(\mu\delta)$$

where D represents the differential operator.

Solution: Ef(x) = f(x+h)

$$= f(x) + hf'(x) + \frac{h^{2}}{2!}f''(x) + \dots$$

$$= \left[1 + hD + \frac{h^{2}D^{2}}{2!} + \dots \right] f(x)$$

$$Ef(x) = e^{hD}f(x)$$

$$\Rightarrow E = e^{hD}$$

$$\Rightarrow \log E = hD \Rightarrow hD = \log(1 + \Delta)$$

$$\Rightarrow hD = -\log E^{-1} \Rightarrow hD = -\log(1 - \nabla)$$
We know that $\mu = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right] & \delta \left[E^{\frac{1}{2}} - E^{-\frac{1}{2}} \right]$

$$\Rightarrow \mu \delta = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right] \left[E^{\frac{1}{2}} - E^{-\frac{1}{2}} \right] = \frac{1}{2} (E - E^{-1})$$

$$= \frac{1}{2} (e^{hD} - e^{-hD}) = SinhhD$$

 $hD = Sinh^{-1}(\mu\delta)$

Exercise

- 1. Evaluate $\Delta^2(3e^x)$.
- 2. Prove that

i.
$$\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right]$$

- ii. $(E^{1/2} + E^{-1/2})(1 + \Delta)^{\frac{1}{2}} = 2 + \Delta$ where terms have their usual meanings.
- **3.** Prove that

a.
$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$

b.
$$\Delta = \frac{\delta^2}{2} \pm \delta \sqrt{1 + \frac{\delta^2}{4}}$$

c.
$$\mu\delta = \frac{1}{2}(\Delta + \nabla)$$

d.
$$\mu^2 = 1 + \frac{\delta^2}{4}$$

4. Form the table for backward difference of the function given below, and evaluate $\nabla^4 f(5)$ for $f(x) = x^3 - 3x^2 - 5x - 7$ where x = 0, 1, 2, 3, 4, 5.