

Operating System
Deadlocks

Prepared By:

 Dr. Sanjeev Gangwar

 Assistant Professor,

 Department of Computer Applications,

 VBS Purvanchal University, Jaunpur

Deadlocks
In a multiprogramming environment several processes may compete for a finite number of
resources. A process request resources; if the resource is available at that time a process enters
the wait state. Waiting process may never change its state because the resources requested are
held by other waiting process. This situation is known as deadlock.

Generally, a system has a finite set of resources (such as memory, IO devices, etc.) and a finite
set of processes that need to use these resources. A process which wishes to use any of these
resources makes a request to use that resource. If the resource is free, the process gets it. If it is
used by another process, it waits for it to become free. The assumption is that the resource will
eventually become free and the waiting process will continue on to use the resource. But what if
the other process is also waiting for some resource?

“A set of processes is in a deadlock state when every process in the set is waiting for an event
that can only be caused by another process in the set.”

If a process is in the need of some resource, physical or logical, it requests the kernel of
operating system. The kernel, being the resource manager, allocates the resources to the
processes. If there is a delay in the allocation of the resource to the process, it results in the idling
of process. The deadlock is a situation in which some processes in the system faces indefinite
delays in resource allocation.

System Model: A process must request a resource before using it, and must release the
resource after using it. A process may request as many resources as it requires to carry out its
designated tasks. The number of resources requested may not exceed the total number of
resources available in the system.

Under the normal mode of operation, a process may utilize a resource in only the following
sequence:

 Request: if the request cannot be granted immediately then the requesting process must
wait until it can acquire the resource.

 Use: In this state the process operates on the resource.

 Release: the process releases the resource.

To illustrate a deadlocked state, consider a system with 3 CDRW drives. Each of 3 processes
holds one of these CDRW drives. If each process now requests another drive, the 3 processes
will be in a deadlocked state. Each is waiting for the event “CDRW is released” which can be
caused only by one of the other waiting processes. This example illustrates a deadlock involving
the same resource type.

Deadlocks may also involve different resource types. Consider a system with one printer and one
DVD drive. The process Pi is holding the DVD and process Pj is holding the printer. If Pi
requests the printer and Pj requests the DVD drive, a deadlock occurs.

Preemptable and Nonpreemptable Resources: Resources come in two flavors:
preemptable and nonpreemptable. A preemptable resource is one that can be taken away from
the process with no ill effects. Memory is an example of a preemptable resource. On the other
hand, a nonpreemptable resource is one that cannot be taken away from process (without causing
ill effect). For example, CD resources are not preemptable at an arbitrary moment.

Reallocating resources can resolve deadlocks that involve preemptable resources. Deadlocks that
involve nonpreemptable resources are difficult to deal with.

Deadlock Characterization: In deadlock, processes never finish executing and system
resources are tied up, preventing other jobs from ever starting.

Necessary Conditions: A deadlock situation can arise if the following four conditions hold
simultaneously in a system

 Mutual exclusion: At least one resource must be held in a nonsharable mode; that is,
only one process at a time can use the resource. If another process requests that resource,
the requesting process must be delayed until the resource has been released.

 Hold and wait: There must exist a process that is holding at least one resource and is
waiting to acquire additional resources that are currently being held by other processes.

 No preemption: Resources cannot be preempted; that is, a resource can be released only
voluntarily by the process holding it, after that process, has completed its task.

 Circular wait: There must exist a set {P0, P1, ..., Pn } of waiting processes such that P0
is waiting for a resource that is held by P1, P1 is waiting for a resource that is held by P2,
…., Pn-1 is waiting for a resource that is held by Pn, and Pn is waiting for a resource that
is held by P0.

As an example, consider the traffic deadlock in the following Figure (1):

 Fig 1: traffic example

Consider each section of the street as a resource.

 Mutual exclusion condition applies, since only one vehicle can be on a section of the
street at a time.

 Hold-and-wait condition applies, since each vehicle is occupying a section of the street,
and waiting to move on to the next section of the street.

 No-preemptive condition applies, since a section of the street that is occupied by a
vehicle cannot be taken away from it.

 Circular wait condition applies, since each vehicle is waiting on the next vehicle to move.
That is, each vehicle in the traffic is waiting for a section of street held by the next
vehicle in the traffic.

The simple rule to avoid traffic deadlock is that a vehicle should only enter an intersection if it is
assured that it will not have to stop inside the intersection.

It is not possible to have a deadlock involving only one single process. The deadlock involves a
circular “hold-and-wait” condition between two or more processes, so “one” process cannot hold
a resource, yet be waiting for another resource that it is holding. In addition, deadlock is not
possible between two threads in a process, because it is the process that holds resources, not the
thread that is, each thread has access to the resources held by the process.

Resource-Allocation Graph: Deadlocks can be described more precisely in terms of a
directed graph called a system resource allocation graph. This graph consists of a set of vertices
V and a set of edges E. the set of vertices V is partitioned into 2 different types of nodes: P =
{P1, P2….Pn}, the set consisting of all the active processes in the system. R= {R1, R2….Rm},
the set consisting of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi ->Rj. It signifies that
process Pi has requested an instance of resource type Rj and is currently waiting for that
resource. A directed edge from resource type Rj to process Pi is denoted by Rj ->Pi, it
signifies that an instance of resource type Rj has been allocated to process Pi. A directed
edge Pi ->Rj is called a request edge. A directed edge Rj->Pi is called an assignment edge.

We represent each process Pi as a circle, each resource type Rj as a square. Since resource
type Rj may have more than one instance. We represent each such instance as a dot within
the square. A request edge points to only the rectangle Rj. An assignment edge must also
designate one of the dots in the square.

Process

Resource type with three instances

Pi request instance of Rj

Pi is holding an instance of Rj

When process Pi requests an instance of resource type Rj, a request edge is inserted in the
resource allocation graph. When this request can be fulfilled, the request edge is
instantaneously transformed to an assignment edge. When the process no longer needs access
to the resource, it releases the resource, as a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 2 depicts the following situation

The sets P, R, E:

 P= {P1, P2, P3}
 R= {R1, R2, R3, R4}
 E= {P1 ->R1, P2 ->R3, R1 ->P2, R2 ->P2, R2 ->P1, R3 ->P3}

Resource instances:

 One instance of resource type R1
 Two instances of resource type R2
 One instance of resource type R3
 Three instances of resource type R4

 Fig 2: Resource

Process States:

 Process P1 is holding an instance of resource type R2 and is waiting for an instance of

resource type R1.
 Process P2 is holding an instance of R1 and an instance o

of R3.
 Process P3 is holding an instance of R3.

If the graph contains no cycles, then no process in the system is deadlocked. If the graph does
contain a cycle, then a deadlock may exist.

Suppose that process P3 requests
currently available, a request edge P3
minimal cycles exist in the system

 P1 ->R1 ->P2 ->R3

 P2 ->R3 ->P3 ->R2

One instance of resource type R1
Two instances of resource type R2
One instance of resource type R3

of resource type R4

Fig 2: Resource-allocation graph

Process P1 is holding an instance of resource type R2 and is waiting for an instance of

Process P2 is holding an instance of R1 and an instance of R2 and is waiting for instance

Process P3 is holding an instance of R3.

If the graph contains no cycles, then no process in the system is deadlocked. If the graph does
contain a cycle, then a deadlock may exist.

Suppose that process P3 requests an instance of resource type R2. Since no resource instance is
currently available, a request edge P3 ->R2 is added to the graph (Figure 3). At this point, two
minimal cycles exist in the system

>R3 ->P3 ->R2 - >P1

>R2 ->P2

Process P1 is holding an instance of resource type R2 and is waiting for an instance of

f R2 and is waiting for instance

If the graph contains no cycles, then no process in the system is deadlocked. If the graph does

an instance of resource type R2. Since no resource instance is
At this point, two

 Fig 3: Resource

Processes P1, P2, P3 are deadlocked. Process P2 is waiting for the resource R3, which is held by
process P3.process P3 is waiting for either process P1 or
process P1 is waiting for process P2 to release resource R1.

Now consider the resource-allocation graph in Figure 4. In this example we also have a cycle

 P1

Fig 4: resource

However there is no deadlock. Process P4 may release its instance of resource type R2. That
resource can then be allocated to P3, breaking the cyc

Fig 3: Resource-allocation graph with a deadlock

Processes P1, P2, P3 are deadlocked. Process P2 is waiting for the resource R3, which is held by
waiting for either process P1 or P2 to release resource R2. In addition,

process P1 is waiting for process P2 to release resource R1.

allocation graph in Figure 4. In this example we also have a cycle

P1 ->R1 ->P3 ->R2 ->P1

Fig 4: resource-allocation graph with a cycle but no deadlock

However there is no deadlock. Process P4 may release its instance of resource type R2. That
resource can then be allocated to P3, breaking the cycle.

Processes P1, P2, P3 are deadlocked. Process P2 is waiting for the resource R3, which is held by
P2 to release resource R2. In addition,

allocation graph in Figure 4. In this example we also have a cycle

However there is no deadlock. Process P4 may release its instance of resource type R2. That

Problem 1- in a system, the following state of processes and resource are given

 P1 ->R1, P2 ->R3, R2 ->P1, R1 ->P3, P4 ->R3, R1 ->P4

Solution-

 R1

 R2

 R3

Problem 2- A system contains one tape and one printer and two processes Pi and Pj that use
three resources as follows:

Process Pi Process Pj

Request Tape Request Printer

Request Printer Request Tape

Use Tape and Printer Use Tape and Printer

Release Printer Release Printer

Release Tape Release Printer

Show that the set of process {Pi, Pj} is in deadlock state.

Solution- Resource requests by Pi and Pj take place in the following order:

(1) Process Pi requests the tape.
(2) Process Pj requests the printer.
(3) Process Pi requests the printer.
(4) Process Pj requests the tape.

 P1

 P2

 P3

P4

The first two (1) and (2) requests are granted immediately because a tape and a printer exist in
the system. Now process Pi holds the tape and Pj holds the printer. When Pi asks for the printer,
it is blocked until Pj releases the printer. Similarly Pj is blocked until Pi releases the tape. So the
set of processes {Pi, Pj} is in deadlock state.

Problem 3- In a system, the following state of processes and resources are given:

R1 ->P1, P1 ->R2, P2 ->R3, R2 ->P2, R3 ->P3, P3 ->R4, P4 ->R3, R4 ->P4, P4 ->R1, R1 ->P5

Draw the resource-allocation graph (RAG) for the system and check for deadlock condition.

Solution-

 R1 R2 R3 R4

In this scenario, processes P1, P2, P3 and P4 are holding one resource each and requesting for
one more resource, which is held by the next process. From the RAG drawn above, it can be seen
that there is a cycle, in the form of circular wait in the graph, thereby, causing a deadlock
situation.

References:

(1) Abraham Silberschatz, Galvin & Gagne, Operating System Concepts, John Wiley &

Sons, INC.

(2) Harvay M.Deital, Introduction to Operating System, Addition Wesley Publication

Company.

(3) Vijay Shukla, Operating System, S.K. Kataria & Sons.
(4) Naresh Chauhan, Principles of Operating System, Oxford University Press.

P1 P2 P3 P4

P5

Operating System

Prepared By:

Dr. Sanjeev Gangwar

Assistant Professor

Department of Computer Applications,

VBS Purvanchal University, Jaunpur

1

Introduction
 What is an operating system?

 Goals of an Operating System

 Computer System Components

 Operating System Definitions

 Operating System Functions

 Simple Batch Systems

 Multi-user Operating System

 Multi-processor Operating System

 Multiprogramming Operating System

 Time-Sharing System

 Real-Time System

2Dr. Sanjeev Gangwar, Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur

What is an Operating System?

 An operating system

runs on computer

hardware and serves as a

platform for other

software to run on the

computer system.

 An Operating System

(OS) is an interface

between computer user

and computer hardware.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 3

Goals of an Operating System

 The purpose of an operating system is to be provided an

environment in which a user can execute programs.

 Its primary goals are to make the computer system

convenience for the user.

 An operating system allows the computer hardware to be

used in an efficient manner.

 The Operating System is also responsible for security and

ensuring that unauthorized users do not access the system.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 4

Computer System Components

A computer system can be divided roughly into four
components

➢Hardware- includes the physical parts of a computer such as

CPU, Memory, I/O devices

➢Operating system- is software that communicates with the

hardware and allows other programs to run.

➢Applications programs- is a software program that runs on

your computer (Word processors, Database, Media players,

Video games, Compilers).

➢Users- A user is a person who utilizes a computer (People,

Machines, other computers).

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 5

Operating System Definitions

 Resource Allocator- Operating system can be viewed as
resource allocator where in resources are – CPU time,
memory space, file storage space, I/O devices etc.
Operating system must decide how to allocate these
resources to specific programs and users so that it can
operate the computer system efficiently.

 Control Program- Operating system is also a control
program. A control program manages the execution of
user programs to prevent errors and improper use of
computer. It is concerned with the operation and control
of I/O devices.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 6

Operating System Functions

The various functions of operating system are as
follows:

 Process Management function allocates the processor to
execute a chosen process.

 Memory Management function finds free space in
memory and allocate it to different processes.

 File Management function keeps track of all information
about files that how they are opened or closed.

 Device Management function allocates a device to a
process.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur
7

Simple Batch Systems

 Batch Operating Systems are the oldest types of operating

system.

 The users of a batch operating system do not interact with

the computer directly.

 Each user prepares his job on an off-line device like punch

cards and submit it to the computer operator.

 Automatically transfers control from one job to another.

 To speed up processing, jobs with similar needs are

batched together and run as a group.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 8

Simple Batch Systems (Cont.)

 The programmers leave their programs with the operator

and the operator then sorts the programs with similar

requirements into batches.

 Common output devices were line printers, tape drives

and card punches.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 9

Operating
System

Job 1

Job 2

Job 3

Job n

Batch

Batch

Batch

Batch

CPU

Multi-user Operating System
 Known as network operating systems.

 It allows for multiple users to use the same computer at

the same time and/or different times.

 It is used as a single server and multiple number of clients.

 Remote access is provided via a network so that users can

access the computer remotely using a terminal or other

computer.

 Time sharing system and Internet servers as the multi user

systems.

 Examples are Linux, Unix Windows etc.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 10

Multi-user Operating System (Cont.)

Multi-user operating system

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 11

User 1

User 2

User n

System

Multi-processor Operating System

 Multi-processor operating system refers to the use of two

or more central processing units (CPU) within a single

computer system.

 These multiple CPUs are in a close communication

sharing the computer bus, memory and other peripheral

devices. These systems are referred as tightly coupled

systems or parallel systems.

 In a loosely coupled system, each processor has its own

logical address space and its own memory. These systems

are referred as distributed memory systems.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 12

Multi-processor Operating System (Cont.)

Advantages:

 Economical

 Increased throughput

 Increased reliability

➢ Symmetric Multiprocessing- Each processor runs an

identical copy of the operating system.

➢Asymmetric Multiprocessing- Each processor is assigned

a specific task; master processor schedules and allocates

work to slave processors.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 13

Multiprogramming Operating System

OS

Job 1

Job 2

Job 3

Job 4

 Multiprogramming means more
than one process in main
memory which are ready to
execute

 The idea is to reduce the CPU
idle time for as long as possible.

➢ Advantages:

 Efficient memory utilization

 Throughput increases

 CPU is never idle, so
performance increases.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 14

Time Sharing System
 A system that allows multiple users to interact with a

computer at the same time.

 Time sharing or multitasking is a logical extension of

multiprogramming. Processor’s time which is shared

among multiple users simultaneously is termed as time

sharing.

 Time sharing OS also allows many programs to run at the

same time.

➢ Advantages:

 Quick response

 Reduces CPU idle time

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 15

Time Sharing System (Cont.)

 The main difference between Multiprogramming

operating system and Time-Sharing system is that in case

of Multiprogrammed OS, objective is to maximize

processor use, whereas in Time sharing system objective

is to minimize response time.

Examples: Multics, Unix, etc.

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 16

Real-Time System
 A real-time requires that results be produced within a

specified deadline period.

 Most real-time system are embedded.

 System that interact predictably with events in the
outside world.

➢Examples:

➢Flight control system

➢Satellite guidance system

➢Patient monitoring system

➢Airbag system

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 17

Real-Time System (Cont.)

Real-Time System

Soft real-time system Hard real-time system

A hard real-time system
guarantees that real-time
tasks be completed within
their required deadlines.

Example: Air traffic control,
medical systems.

A soft real-time system
provides priority of real-
time tasks over non real-
time tasks.

Example: Multimedia
streaming, Computer game

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 18

References

 Abraham Silberschatz, Galvin & Gagne, Operating

System Concepts, John Wiley & Sons, INC.

 Harvay M.Deital, Introduction to Operating System,

Addition Wesley Publication Company.

 Andrew S.Tanenbaum, Operating System Design and

Implementation, PHI

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur
19

Dr. Sanjeev Gangwar Assistant Professor, Department of Computer Applications, VBS Purvanchal University, Jaunpur 20

	Operating System
	Operating System1

