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Points and Lines 

• Point plotting is done by converting a single coordinate position furnished by an application program 

into appropriate operations for the output device in use.

• Line drawing is done by calculating intermediate positions along the line path between two specified 

endpoint positions.

• The output device is then directed to fill in those positions between the end points with some color.

• For some device such as a pen plotter or random scan display, a straight line can be drawn smoothly 

from one end point to other.

• Digital devices display a straight line segment by plotting discrete points between the two endpoints.

• Discrete coordinate positions along the line path are calculated from the equation of the line.

• For a raster video display, the line intensity is loaded in frame buffer at the corresponding pixel 

positions.

• Reading from the frame buffer, the video controller then plots the screen pixels.

• Screen locations are referenced with integer values, so plotted positions may only approximate actual 

line positions between two specified endpoints.

• For example line position of (12.36, 23.87) would be converted to pixel position (12, 24).

• This rounding of coordinate values to integers causes lines to be displayed with a stair step appearance

(“the jaggies”), as represented in fig 2.1. 
 

 
Fig. 2.1: - Stair step effect produced when line is generated as a series of pixel positions. 

• The stair step shape is noticeable in low resolution system, and we can improve their appearance 

somewhat by displaying them on high resolution system.

• More effective techniques for smoothing raster lines are based on adjusting pixel intensities along the 

line paths.

• For raster graphics device-level algorithms discuss here, object positions are specified directly in integer 

device coordinates.

• Pixel position will referenced according to scan-line number and column number which is illustrated by 

following figure.
 

Fig. 2.2: - Pixel positions referenced by scan-line number and column number. 

• To load the specified color into the frame buffer at a particular position, we will assume we have 

available low-level procedure of the form 𝑠𝑒𝑡𝑝𝑖𝑥𝑒𝑙(𝑥, 𝑦).
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• Similarly for retrieve the current frame buffer intensity we assume to have procedure 𝑔𝑒𝑡𝑝𝑖𝑥𝑒𝑙(𝑥, 𝑦).

Line Drawing Algorithms 

• The Cartesian slop-intercept equation for a straight line is “𝑦 = 𝑚𝑥 + 𝑏” with ‘𝑚’ representing slop and 

‘𝑏’ as the intercept.

• The two endpoints of the line are given which are say (𝑥1, 𝑦1) and (𝑥2, 𝑦2).
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Fig. 2.3: - Line path between endpoint positions. 

• We can determine values for the slope m by equation:

𝑚 = (𝑦2 − 𝑦1)/(𝑥2 − 𝑥1) 

• We can determine values for the intercept b by equation:

𝑏 = 𝑦1 − 𝑚 ∗ 𝑥1 

• For the given interval ∆𝑥 along a line, we can compute the corresponding 𝑦 interval ∆𝑦 as:

∆𝑦 = 𝑚 ∗ ∆𝑥 

• Similarly for ∆𝑥:

∆𝑥 = ∆𝑦/𝑚 

• For line with slop |𝑚| < 1, ∆𝑥 can be set proportional to small horizontal deflection voltage and the 

corresponding vertical deflection voltage is then set proportional to ∆𝑦 which is calculated from above 

equation.

• For line with slop |𝑚| > 1, ∆𝑦 can be set proportional to small vertical deflection voltage and the 

corresponding horizontal deflection voltage is then set proportional to ∆𝑥 which is calculated from 

above equation.

• For line with slop 𝑚 = 1, ∆𝑥 = ∆𝑦 and the horizontal and vertical deflection voltages are equal.

DDA Algorithm 

• Digital differential analyzer (DDA) is scan conversion line drawing algorithm based on calculating either

∆𝑦 or ∆𝑥 using above equation. 

• We sample the line at unit intervals in one coordinate and find corresponding integer values nearest the 

line path for the other coordinate.

• Consider first a line with positive slope and slope is less than or equal to 1:

We sample at unit x interval (∆𝑥 = 1) and calculate each successive y value as follow: 

𝑦 = 𝑚 ∗ 𝑥 + 𝑏 

𝑦𝑘 = 𝑚 ∗ (𝑥 + 1) + 𝑏 

In general 𝑦𝑘 = 𝑚 ∗ (𝑥 + 𝑘) + 𝑏 , & 

𝑦𝑘+1  =  𝑚 ∗ (𝑥  +  𝑘  +  1)  +  𝑏 

Now write this equation in form: 

𝑦𝑘+1 − 𝑦𝑘 = (𝑚 ∗ (𝑥 + 𝑘 + 1) + 𝑏) – (𝑚 ∗ (𝑥 + 𝑘) + 𝑏) 

𝑦𝑘+1 = 𝑦𝑘 + 𝑚 

So that it is computed fast in computer as addition is fast compare to multiplication. 



 

 

• In above equation 𝑘 takes integer values starting from 1 and increase by 1 until the final endpoint is 

reached.

• As 𝑚 can be any real number between 0 and 1, the calculated 𝑦 values must be rounded to the nearest 

integer.

• Consider a case for a line with a positive slope greater than 1:

We change the role of 𝑥 and 𝑦 that is sample at unit 𝑦 intervals (∆𝑦 = 1) and calculate each succeeding 

𝑥 value as: 

𝑥 = (𝑦 − 𝑏)/𝑚 

𝑥1 = ((𝑦 + 1) − 𝑏)/𝑚 

In general 𝑥𝑘 = ((𝑦 + 𝑘) − 𝑏)/𝑚, & 

𝑥𝑘+1   =  ((𝑦  +  𝑘  +  1) − 𝑏)/𝑚 

Now write this equation in form: 

𝑥𝑘+1 − 𝑥𝑘 = (((𝑦 + 𝑘 + 1) − 𝑏)/𝑚) – (((𝑦 + 𝑘) − 𝑏)/𝑚) 

𝑥𝑘+1 = 𝑥𝑘 + 1/𝑚 

• Above both equations are based on the assumption that lines are to be processed from left endpoint to 

the right endpoint.

• If we processed line from right endpoint to left endpoint than: 

If ∆𝑥 = −1 equation become:

𝑦𝑘+1 = 𝑦𝑘 – 𝑚 

If ∆𝑦 = −1 equation become: 

𝑥𝑘+1 = 𝑥𝑘 − 1/𝑚 

• Above calculated equations also used to calculate pixel position along a line with negative slope.

• Procedure for DDA line algorithm.

Void lineDDA (int xa, int ya, int xb, int yb) 

{ 

int dx = xb – xa, dy = yb – ya, steps, k; 

float xincrement, yincrement, x = xa, y = ya; 

if (abs(dx)>abs(dy)) 

{ 

 
} 

else 

{ 

 
} 

Steps = abs (dx); 
 
 
 

Steps = abs (dy); 

xincrement = dx/(float) steps; 

yincrement = dy/(float) steps; 

 
setpixel (ROUND (x), ROUND (y)); 

for(k=0;k<steps;k++) 

{ 

x += xincrement; 

y += yincrement; 

setpixel (ROUND (x), ROUND (y)); 

} 

} 



 

 

Advantages of DDA algorithm 

• It is faster algorithm.

• It is simple algorithm.

Disadvantage of DDA algorithm 

• Floating point arithmetic is time consuming.

• Poor end point accuracy.

Bresenham’s Line Algorithm 

• An accurate and efficient raster line-generating algorithm, developed by Bresenham which scan converts 

line using only incremental integer calculations that can be modified to display circles and other curves.

• Figure shows section of display screen where straight line segments are to be drawn.

 

 
1 

 

1 
 
 

1 
 
 

1 

 
 
 

Fig. 2.4: - Section of a display screen where a 

straight line segment is to be plotted, starting 

from the pixel at column 10 on scan line 11. 

Fig. 2.5: - Section of a display screen where a 

negative slope line segment is to be plotted, 

starting from the pixel at column 50 on scan 

line 50. 

• The vertical axes show scan-line positions and the horizontal axes identify pixel column.

• Sampling at unit 𝑥 intervals in these examples, we need to decide which of two possible pixel position is 

closer to the line path at each sample step.

• To illustrate bresenham’s approach, we first consider the scan-conversion process for lines with positive 

slope less than 1.

• Pixel positions along a line path are then determined by sampling at unit 𝑥 intervals.

• Starting from left endpoint (𝑥0, 𝑦0) of a given line, we step to each successive column and plot the pixel 

whose scan-line 𝑦 values is closest to the line path.

• Assuming we have determined that the pixel at (𝑥𝑘, 𝑦𝑘) is to be displayed, we next need to decide which 

pixel to plot in column 𝑥𝑘 + 1.

• Our choices are the pixels at positions (𝑥𝑘 + 1, 𝑦𝑘) and (𝑥𝑘 + 1, 𝑦𝑘 + 1).

• Let’s see mathematical calculation used to decide which pixel position is light up.

• We know that equation of line is:

𝑦 = 𝑚𝑥 + 𝑏 

Now for position 𝑥𝑘 + 1. 

𝑦 = 𝑚(𝑥𝑘 + 1) + 𝑏 

• Now calculate distance bet actual line’s 𝑦 value and lower pixel as 𝑑1 and distance bet actual line’s 𝑦

value and upper pixel as 𝑑2. 

𝑑1 = 𝑦 − 𝑦𝑘 
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∆𝑥 

d1  = m(xk + 1) + b − yk ....................................................................................................................................................... (1) 

𝑑2 = (𝑦𝑘 + 1) − 𝑦 

𝑑2 = (𝑦𝑘 + 1) − 𝑚(𝑥𝑘 + 1) − 𝑏..…………………………………………………………………………………………………………(2) 

• Now calculate 𝑑1 − 𝑑2 from equation (1) and (2).

𝑑1 − 𝑑2 = (𝑦 – 𝑦𝑘) – ((𝑦𝑘 + 1) – 𝑦) 

𝑑1 − 𝑑2 = {𝑚(𝑥𝑘 + 1) + 𝑏 − 𝑦𝑘} − {(𝑦𝑘 + 1) − 𝑚(𝑥𝑘 + 1) − 𝑏} 

𝑑1 − 𝑑2 = {𝑚𝑥𝑘 + 𝑚 + 𝑏 − 𝑦𝑘} − {𝑦𝑘 + 1 − 𝑚𝑥𝑘 − 𝑚 − 𝑏} 

𝑑1 − 𝑑2 = 2𝑚(𝑥𝑘 + 1) − 2𝑦𝑘 + 2𝑏 − 1……………………………………………………………………………….……………..(3) 

• Now substitute 𝑚 = ∆𝑦/∆𝑥 in equation (3)

𝑑1 − 𝑑2 = 2 (∆𝑦) (𝑥𝑘 + 1) − 2𝑦𝑘 + 2𝑏 − 1 ….………………………………….………………………………………………….(4) 

• Now we have decision parameter 𝑝𝑘 for 𝑘𝑡ℎ step in the line algorithm is given by:

𝑝𝑘 = ∆𝑥(𝑑1 − 𝑑2) 

𝑝𝑘 = ∆𝑥(2∆𝑦/∆𝑥(𝑥𝑘 + 1) – 2𝑦𝑘 + 2𝑏 – 1) 

𝑝𝑘 = 2∆𝑦𝑥𝑘 + 2∆𝑦 − 2∆𝑥𝑦𝑘 + 2∆𝑥𝑏 − ∆𝑥 

𝑝𝑘 = 2∆𝑦𝑥𝑘 − 2∆𝑥𝑦𝑘 + 2∆𝑦 + 2∆𝑥𝑏 − ∆𝑥 ……………………………………………………….………………………(5) 

𝑝𝑘   =  2∆𝑦𝑥𝑘  −  2∆𝑥𝑦𝑘  +  𝐶 (𝑊ℎ𝑒𝑟𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶  = 2∆𝑦  +  2∆𝑥𝑏  − ∆𝑥) ................................................. (6) 

• The sign of 𝑝𝑘 is the same as the sign of 𝑑1 − 𝑑2, since ∆𝑥 > 0 for our example.

• Parameter 𝑐 is constant which is independent of pixel position and will eliminate in the recursive 

calculation for 𝑝𝑘.

• Now if 𝑝𝑘 is negative then we plot the lower pixel otherwise we plot the upper pixel.

• So successive decision parameters using incremental integer calculation as:

𝑝𝑘+1 = 2∆𝑦𝑥𝑘+1 − 2∆𝑥𝑦𝑘+1 + C 

• Now Subtract 𝑝𝑘 from 𝑝𝑘+1

𝑝𝑘+1 − 𝑝𝑘 = 2∆𝑦(𝑥𝑘+1 − 𝑥𝑘) -2∆𝑥(𝑦𝑘+1 − 𝑦𝑘) 

𝑝𝑘+1 − 𝑝𝑘 = 2∆𝑦𝑥𝑘+1 − 2∆𝑥𝑦𝑘+1 + C − 2∆𝑦𝑥𝑘 + 2∆𝑥𝑦𝑘 − C 

But 𝑥𝑘+1 = 𝑥𝑘 + 1, so that (𝑥𝑘+1 − 𝑥𝑘) = 1 

𝑝𝑘+1 = 𝑝𝑘 + 2∆𝑦 − 2∆𝑥(𝑦𝑘+1 − 𝑦𝑘) 

• Where the terms 𝑦𝑘+1 − 𝑦𝑘 is either 0 or 1, depends on the sign of parameter 𝑝𝑘.

• This recursive calculation of decision parameters is performed at each integer 𝑥 position starting at the 

left coordinate endpoint of the line.

• The first decision parameter 𝑝0 is calculated using equation (5) as first time we need to take constant 

part into account so:

𝑝𝑘   =  2∆𝑦𝑥𝑘  −  2∆𝑥𝑦𝑘  +  2∆𝑦  +  2∆𝑥𝑏  −  ∆𝑥 

𝑝0   =  2∆𝑦𝑥0  −  2∆𝑥𝑦0  +  2∆𝑦  +  2∆𝑥𝑏  −  ∆𝑥 

Now 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑏 = 𝑦0 – 𝑚𝑥0 

𝑝0 = 2∆𝑦𝑥0 − 2∆𝑥𝑦0 + 2∆𝑦 + 2∆𝑥(𝑦0 − 𝑚𝑥0) − ∆x 

Now Substitute 𝑚 = ∆𝑦/𝛥𝑥 

𝑝0 = 2∆𝑦𝑥0 − 2∆𝑥𝑦0 + 2∆𝑦 + 2∆𝑥(𝑦0 − (∆𝑦/∆𝑥)𝑥0) − ∆x 

𝑝0 = 2∆𝑦𝑥0 − 2∆𝑥𝑦0 + 2∆𝑦 + 2∆𝑥𝑦0 − 2∆𝑦𝑥0 − ∆x 

𝑝0 = 2∆𝑦 − ∆x 

• Let’s see Bresenham’s line drawing algorithm for |𝑚| < 1

1. Input the two line endpoints and store the left endpoint in (𝑥0, 𝑦0). 

2. Load (𝑥0, 𝑦0) into the frame buffer; that is, plot the first point. 

3. Calculate constants ∆𝑥, ∆𝑦, 2∆𝑦, and 2∆𝑦 − 2∆𝑥, and obtain the starting value for the decision 

parameter as 



 

 

𝑝0  = 2∆𝑦 − ∆𝑥 

4. At each 𝑥𝑘 along the line, starting at 𝑘 = 0, perform the following test: 

If 𝑝𝑘 < 0, the next point to plot is (𝑥𝑘 + 1, 𝑦𝑘) and 

𝑝𝑘+1 = 𝑝𝑘 + 2∆𝑦 

Otherwise, the next point to plot is (𝑥𝑘 + 1, 𝑦𝑘 + 1) and 

𝑝𝑘+1 = 𝑝𝑘 + 2∆𝑦 − 2∆𝑥 

5. Repeat step-4 ∆𝑥 times. 

• Bresenham’s algorithm is generalized to lines with arbitrary slope by considering symmetry between the 

various octants and quadrants of the 𝑥𝑦 plane.

• For lines with positive slope greater than 1 we interchange the roles of the 𝑥 and 𝑦 directions.

• Also we can revise algorithm to draw line from right endpoint to left endpoint, both 𝑥 and 𝑦 decrease as 

we step from right to left.

• When 𝑑1 − 𝑑2 = 0 we choose either lower or upper pixel but once we choose lower than for all such 

case for that line choose lower and if we choose upper the for all such case choose upper.

• For the negative slope the procedure are similar except that now one coordinate decreases as the other 

increases.

• The special case handle separately. Horizontal line (∆𝑦 = 0), vertical line (∆𝑥 = 0) and diagonal line  

with |∆𝑥| = |∆𝑦| each can be loaded directly into the frame buffer without processing  them through  

the line plotting algorithm.

Parallel Execution of Line Algorithms 

• The line-generating algorithms we have discussed so far determine pixel positions sequentially.

• With parallel computer we can calculate pixel position along a line path simultaneously by dividing work 

among the various processors available.

• One way to use multiple processors is partitioning existing sequential algorithm into small parts and 

compute separately.

• Alternatively we can go for other ways to setup the processing so that pixel positions can be calculated 

efficiently in parallel.

• Important point to be taking into account while devising parallel algorithm is to balance the load among 

the available processors.

• Given 𝒏𝒑 number of processors we can set up parallel Bresenham line algorithm by subdividing the line 

path into 𝒏𝒑 partitions and simultaneously generating line segment in each of the subintervals.

• For a line with slope 0 < 𝑚 < 1 and left endpoint coordinate position (𝑥0, 𝑦0), we partition the line  

along the positive 𝑥 direction.

• The distance between beginning 𝑥 positions of adjacent partitions can be calculated as:

∆𝑥𝑝 = (∆𝑥 + 𝑛𝑝 − 1)/𝑛𝑝 

Were ∆𝑥 is the width of the line. And value for partition with ∆𝑥𝑝 is computed using integer division. 

• Numbering the partitions and the processors, as 0, 1, 2, up to 𝒏𝒑 − 𝟏, we calculate the starting 𝑥

coordinate for the 𝑘𝑡ℎ partition as: 

𝑥𝑘 = 𝑥0 + 𝑘∆𝑥𝑝 

• To apply Bresenham's algorithm over the partitions, we need the initial value for the 𝑦 coordinate and 

the initial value for the decision parameter in each partition.

• The change ∆𝑦𝑝 in the 𝑦 direction over each partition is calculated from the line slope m and partition 

width ∆𝑥𝑝:

• ∆𝑦𝑝   =  𝑚∆𝑥𝑝
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• At the 𝑘𝑡ℎ partition, the starting 𝑦 coordinate is then

• 𝑦𝑘 = 𝑦0 + 𝑟𝑜𝑢𝑛𝑑(𝑘∆𝑦𝑝)

• The initial decision parameter for Bresenham's algorithm at the start of the 𝑘𝑡ℎ subinterval is obtained 

from Equation(6):

𝑝𝑘 = 2∆𝑦𝑥𝑘 − 2∆𝑥𝑦𝑘 + 2∆𝑦 + 2∆𝑥𝑏 − ∆𝑥 

𝑝 = 2∆𝑦(𝑥 + 𝑘∆𝑥 ) − 2∆𝑥(𝑦 + 𝑟𝑜𝑢𝑛𝑑(𝑘∆𝑦 )) + 2∆𝑦 + 2∆𝑥(𝑦 − 
∆𝑦 

𝑥
 

 
 

) − ∆𝑥 
𝑘 0 𝑝 0 𝑝 0 ∆𝑥 0 

𝑝𝑘 = 2∆𝑦𝑥0 − 2∆𝑦𝑘∆𝑥𝑝 − 2∆𝑥𝑦0 − 2∆𝑥𝑟𝑜𝑢𝑛𝑑(𝑘∆𝑦𝑝) + 2∆𝑦 + 2∆𝑥𝑦0 − 2∆𝑦𝑥0 − ∆𝑥 

𝑝𝑘 = 2∆𝑦𝑘∆𝑥𝑝 − 2∆𝑥𝑟𝑜𝑢𝑛𝑑(𝑘∆𝑦𝑝) + 2∆𝑦 − ∆𝑥 

• Each processor then calculates pixel positions over its assigned subinterval.

• The extension of the parallel Bresenham algorithm to a line with slope greater than 1 is achieved by 

partitioning the line in the 𝑦 direction and calculating beginning 𝑥 values for the positions.

• For negative slopes, we increment coordinate values in one direction and decrement in the other.

X1 X2 

Fig. 2.6: - Bounding box for a line with coordinate extents ∆x and ∆y. 

• Another way to set up parallel algorithms on raster system is to assign each processor to a particular 

group of screen pixels.

• With sufficient number of processor we can assign each processor to one pixel within some screen 

region.

• This approach can be adapted to line display by assigning one processor to each of the pixels within the 

limit of the bounding rectangle and calculating pixel distance from the line path.

• The number of pixels within the bounding rectangle of a line is ∆𝑥 × ∆𝑦.

• Perpendicular distance 𝑑 from line to a particular pixel is calculated by:

𝑑 = 𝐴𝑥 + 𝐵𝑦 + 𝐶 

Where 

𝐴 = −∆𝑦/𝑙𝑖𝑛𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

𝐵  = −∆𝑥/𝑙𝑖𝑛𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

𝐶 = (𝑥0∆𝑦 − 𝑦0∆𝑥)/𝑙𝑖𝑛𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

With 

𝑙𝑖𝑛𝑒𝑙𝑒𝑛𝑔𝑡ℎ = √∆𝑥2 + ∆𝑦2 

• Once the constant 𝐴, 𝐵, and 𝐶 have been evaluated for the line each processors need to perform two 

multiplications and two additions to compute the pixel distance 𝑑.

• A pixel is plotted if d is less than a specified line thickness parameter.

• Instead of partitioning the screen into single pixels, we can assign to each processor either a scan line or 

a column a column of pixels depending on the line slope.



 

 

• Each processor calculates line intersection with horizontal row or vertical column of pixels assigned to 

that processor.

• If vertical column is assign to processor then 𝑥 is fix and it will calculate 𝑦 and similarly is horizontal row 

is assign to processor then 𝑦 is fix and 𝑥 will be calculated.

• Such direct methods are slow in sequential machine but we can perform very efficiently using multiple 

processors.
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Fig. 2.7: - Circle with center coordinates (𝑥𝑐, 𝑦𝑐) and radius 𝑟. 

• A circle is defined as the set of points that are all at a given distance r from a center position say (𝑥𝑐, 𝑦𝑐).

Properties of Circle 
• The distance relationship is expressed by the Pythagorean theorem in Cartesian coordinates as:

(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 = 𝑟2 

• We could use this equation to calculate circular boundary points by incrementing 1 in 𝑥 direction in 

every steps from 𝑥𝑐 – 𝑟 to 𝑥𝑐 + 𝑟 and calculate corresponding 𝑦 values at each position as:

(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2  = 𝑟2 

(𝑦 − 𝑦𝑐)2  = 𝑟2 − (𝑥 − 𝑥𝑐)2 

(𝑦 − 𝑦𝑐) = ±√𝑟2 − (𝑥𝑐 − 𝑥)2 
 

y = 𝑦𝑐 ± √𝑟2 − (𝑥𝑐 − 𝑥)2 

• But this is not best method for generating a circle because it requires more number of calculations which 

take more time to execute.

• And also spacing between the plotted pixel positions is not uniform as shown in figure below.
 

Fig. 2.8: - Positive half of circle showing non uniform spacing bet calculated pixel positions. 
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• We can adjust spacing by stepping through 𝑦 values and calculating 𝑥 values whenever the absolute 

value of the slop of the circle is greater than 1. But it will increases computation processing requirement.

• Another way to eliminate the non-uniform spacing is to draw circle using polar coordinates ‘𝑟’ and ‘ ’.

• Calculating circle boundary using polar equation is given by pair of equations which is as follows.

𝑥   =  𝑥𝑐 +  𝑟 cos 

𝑦  =  𝑦𝑐  +  𝑟 sin 

• When display is produce using these equations using fixed angular step size circle is plotted with uniform 

spacing.

• The step size ‘ ’ is chosen according to application and display device.

• For a more continuous boundary on a raster display we can set the step size at 1/𝑟. This plot pixel 

position that are approximately one unit apart.

• Computation can be reduced by considering symmetry city property of circles. The shape of circle is 

similar in each quadrant.

• We can obtain pixel position in second quadrant from first quadrant using reflection about 𝑦 axis and 

similarly for third and fourth quadrant from second and first respectively using reflection about 𝑥 axis.

• We can take one step further and note that there is also symmetry between octants. Circle sections in 

adjacent octant within one quadrant are symmetric with respect to the 450 line dividing the  two 

octants.

• This symmetry condition is shown in figure below where point (𝑥, 𝑦) on one circle sector is mapped in 

other seven sector of circle.
 

Fig. 2.9: - symmetry of circle. 

• Taking advantage of this symmetry property of circle we can generate all pixel position on boundary of 

circle by calculating only one sector from 𝑥 = 0 to 𝑥 = 𝑦.

• Determining pixel position along circumference of circle using any of two equations shown above still 

required large computation.

• More efficient circle algorithm are based on incremental calculation of decision parameters, as in the 

Bresenham line algorithm.

• Bresenham’s line algorithm can be adapted to circle generation by setting decision parameter for finding

closest pixel to the circumference at each sampling step. 

• The Cartesian coordinate circle equation is nonlinear so that square root evaluations would be required 

to compute pixel distance from circular path.

• Bresenham’s circle algorithm avoids these square root calculation by comparing the square of the pixel 

separation distance.
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• A method for direct distance comparison to test the midpoint between two pixels to determine if this 

midpoint is inside or outside the circle boundary.

• This method is easily applied to other conics also.

• Midpoint approach generates same pixel position as generated by bresenham’s circle algorithm.

• The error involve in locating pixel positions along any conic section using midpoint test is limited to one- 

half the pixel separation.
 

Midpoint Circle Algorithm 

• Similar to raster line algorithm we sample at unit interval and determine the closest pixel position to the 

specified circle path at each step.

• Given radius ‘𝑟’ and center (𝑥𝑐, 𝑦𝑐)

• We first setup our algorithm to calculate circular path coordinates for center (0, 0). And then we will 

transfer calculated pixel position to center (𝑥𝑐, 𝑦𝑐) by adding 𝑥𝑐 to 𝑥 and 𝑦𝑐 to 𝑦.

• Along the circle section from 𝑥 =  0 to 𝑥  =  𝑦 in the first quadrant, the slope of the curve varies from 0 

to -1 so we can step unit step in positive 𝑥 direction over this octant and use a decision parameter to 

determine which of the two possible 𝑦 position is closer to the circular path.

• Position in the other seven octants are then obtain by symmetry.

• For the decision parameter we use the circle function which is:

𝑓𝑐𝑖𝑟𝑐𝑙𝑒(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑟2 

• Any point which is on the boundary is satisfied 𝑓𝑐𝑖𝑟𝑐𝑙𝑒(𝑥, 𝑦) = 0 if the point is inside circle function value 

is negative and if point is outside circle the function value is positive which can be summarize as below.

< 0 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

𝑓𝑐𝑖𝑟𝑐𝑙𝑒(𝑥, 𝑦) {= 0 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 
> 0 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

• Above equation we calculate for the mid positions between pixels near the circular path at each 

sampling step and we setup incremental calculation for this function as we did in the line algorithm.

• Below figure shows the midpoint between the two candidate pixels at sampling position 𝑥𝑘 + 1.

𝒙𝟐 + 𝒚𝟐 − 𝒓𝟐  = 𝟎 
 

𝒚𝒌 

 
𝒚𝒌 − 𝟏 

Midpoint 

 

 
𝒙𝒌 

 
𝒙𝒌 + 𝟏 

 
𝒙𝒌 + 𝟐 

 

Fig. 2.10: - Midpoint between candidate pixel at sampling position 𝑥𝑘 + 1 along circle path. 

• Assuming we have just plotted the pixel at (𝑥𝑘, 𝑦𝑘) and next we need to determine whether the pixel at

position ‘(𝑥𝑘 + 1, 𝑦𝑘)’ or the one at position’ (𝑥𝑘 + 1, 𝑦𝑘 − 1)’ is closer to circle boundary. 

• So for finding which pixel is more closer using decision parameter evaluated at the midpoint between 

two candidate pixels as below:

𝑝𝑘 = 𝑓𝑐𝑖𝑟𝑐𝑙𝑒 (𝑥𝑘 + 1, 𝑦𝑘 − 1) 
( )2 1  2 

2
 

 𝑝𝑘 = 𝑥𝑘 + 1 + (𝑦𝑘 − 
2
) − 𝑟 

• If 𝑝𝑘 < 0 this midpoint is inside the circle and the pixel on the scan line 𝑦𝑘 is closer to circle boundary. 

Otherwise the midpoint is outside or on the boundary and we select the scan line 𝑦𝑘 − 1.

• Successive decision parameters are obtain using incremental calculations as follows:
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𝑝𝑘+1 = 𝑓𝑐𝑖𝑟𝑐𝑙𝑒 (𝑥𝑘+1 + 1, 𝑦𝑘+1 − 
1
) 

𝑝 =  [(𝑥 + 1) + 1]2 + (𝑦 1  2 
2

 
 

𝑘+1 𝑘 
𝑘+1 − 

2
) 

− 𝑟 

• Now we can obtain recursive calculation using equation of 𝑝𝑘+1 and 𝑝𝑘 as follow.
𝑝 − 𝑝 = ([(𝑥 + 1) + 1]2 + (𝑦 1  2 

2 ( )2 
 

 

1  2 
2

 
 

𝑘+1 𝑘 𝑘 𝑘+1 − 
2
) − 𝑟 ) − ( 𝑥𝑘 + 1 + (𝑦𝑘 − 

2
) − 𝑟 ) 

𝑝𝑘+1 − 𝑝𝑘  = (𝑥𝑘 + 1)2 + 2(𝑥𝑘 + 1) + 1 + 𝑦𝑘+12 − 𝑦𝑘+1 + 1 − 𝑟2 − (𝑥𝑘 + 1)2 − 𝑦𝑘2 + 𝑦𝑘 − 1 + 𝑟2 
  

4 4 

𝑝𝑘+1 − 𝑝𝑘 = 2(𝑥𝑘 + 1) + 1 + 𝑦𝑘+1
2 − 𝑦𝑘+1 − 𝑦𝑘

2 + 𝑦𝑘 

𝑝𝑘+1 − 𝑝𝑘 = 2(𝑥𝑘 + 1) + (𝑦𝑘+12 − 𝑦𝑘2) − (𝑦𝑘+1 − 𝑦𝑘) + 1 

𝑝𝑘+1 = 𝑝𝑘 + 2(𝑥𝑘 + 1) + (𝑦𝑘+12 − 𝑦𝑘2) − (𝑦𝑘+1 − 𝑦𝑘) + 1 

• In above equation 𝑦𝑘+1 is either 𝑦𝑘 or 𝑦𝑘 − 1 depending on the sign of the 𝑝𝑘.

• Now we can put 2𝑥𝑘+1 = 2𝑥𝑘 + 2 and when we select 𝑦𝑘+1 = 𝑦𝑘 − 1 we can obtain 2𝑦𝑘+1 = 2𝑦𝑘 − 2.

• The initial decision parameter is obtained by evaluating the circle function at the start position

(𝑥0, 𝑦0) = (0, 𝑟) as follows. 

𝑝0  = 𝑓𝑐𝑖𝑟𝑐𝑙𝑒 (0 + 1, 𝑟 − 1) 
2 1  2 

2 
 

𝑝0 = 1 + (𝑟 − 
2
) − 𝑟 

𝑝 = 1 + 𝑟2 − 𝑟 + 1 − 𝑟2 
4 

𝑝 = 5 − 𝑟 
4 

 

Algorithm for Midpoint Circle Generation 

1. Input radius 𝑟 and circle center (𝑥𝑐, 𝑦𝑐), and obtain the first point on the circumference of a circle 

centered on the origin as 

(𝑥0, 𝑦0) = (0, 𝑟) 

2. calculate the initial value of the decision parameter as 

𝑝   = 5 − 𝑟 
4 

3. At each 𝑥𝑘 position, starting at 𝑘 = 0, perform the following test: 

If 𝑝𝑘 < 0, the next point along the circle centered on (0, 0) is (𝑥𝑘 + 1, 𝑦𝑘) & 

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 +  1 

Otherwise, the next point along the circle is (𝑥𝑘 + 1, 𝑦𝑘 − 1) & 

𝑝𝑘+1  = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘+1 

Where 2𝑥𝑘+1 = 2𝑥𝑘 + 2, & 2𝑦𝑘+1 = 2𝑦𝑘 − 2. 

4. Determine symmetry points in the other seven octants. 

5. Move each calculated pixel position (𝑥, 𝑦) onto the circular path centered on (𝑥𝑐, 𝑦𝑐) and plot the 

coordinate values: 

𝑥  = 𝑥 + 𝑥𝑐, 𝑦 = 𝑦 + 𝑦𝑐 

6. Repeat steps 3 through 5 until 𝑥 ≥ 𝑦. 
 



 

 

 


