Transformation

Changing Position, shape, size, or orientation of an object on display is known as transformation.

Basic Transformation

- Basic transformation includes three transformations **Translation**, **Rotation**, and **Scaling**.
- These three transformations are known as basic transformation because with combination of these three transformations we can obtain any transformation.

Translation

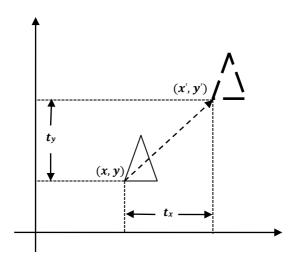


Fig. 3.1: - Translation.

- It is a transformation that used to reposition the object along the straight line path from one coordinate location to another.
- It is rigid body transformation so we need to translate whole object.
- We translate two dimensional point by adding translation distance t_x and t_y to the original coordinate position (x, y) to move at new position (x', y') as:

$$x' = x + t_x$$
 & $y' = y + t_y$

- Translation distance pair (t_x, t_y) is called a **Translation Vector** or **Shift Vector**.
- We can represent it into single matrix equation in column vector as;

$$P' = P + T$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

• We can also represent it in row vector form as:

$$P' = P + T$$

$$[x' \quad y'] = [x \quad y] + [t_x \quad t_y]$$

- Since column vector representation is standard mathematical notation and since many graphics package like **GKS** and **PHIGS** uses column vector we will also follow column vector representation.
- Example: Translate the triangle [A (10, 10), B (15, 15), C (20, 10)] 2 unit in x direction and 1 unit in y direction.

We know that

$$P' = P + T$$

$$P' = [P] + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

For point (10, 10)
$$A' = \begin{bmatrix} 10 \\ 10 \end{bmatrix} + \begin{bmatrix} 2 \\ 10 \end{bmatrix}$$
 $A' = \begin{bmatrix} 12 \\ 11 \end{bmatrix}$ For point (15, 15) $B' = \begin{bmatrix} 15 \\ 15 \end{bmatrix} + \begin{bmatrix} 2 \\ 16 \end{bmatrix}$ $B' = \begin{bmatrix} 17 \\ 16 \end{bmatrix}$ $B' = \begin{bmatrix} 17 \\ 20 \end{bmatrix} + \begin{bmatrix} 2 \\ 10 \end{bmatrix}$ $C' = \begin{bmatrix} 20 \\ 21 \end{bmatrix} + \begin{bmatrix} 2 \\ 11 \end{bmatrix}$

• Final coordinates after translation are [A´ (12, 11), B´ (17, 16), C´ (22, 11)].

Rotation

- It is a transformation that used to reposition the object along the circular path in the XY plane.
- To generate a rotation we specify a rotation angle θ and the position of the **Rotation Point** (**Pivot Point**) (x_r, y_r) about which the object is to be rotated.
- Positive value of rotation angle defines counter clockwise rotation and negative value of rotation angle defines clockwise rotation.
- We first find the equation of rotation when pivot point is at coordinate origin (0,0).

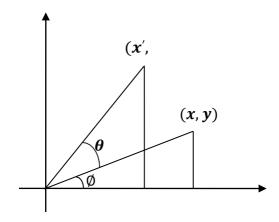


Fig. 3.2: - Rotation.

• From figure we can write.

$$x = r \cos \emptyset$$

 $y = r \sin \emptyset$
and

$$x' = r\cos(\theta + \emptyset) = r\cos\phi\cos\theta - r\sin\phi\sin\theta$$
$$y' = r\sin(\phi + \theta) = r\cos\phi\sin\theta + r\sin\phi\cos\theta$$

• Now replace $r \cos \emptyset$ with x and $r \sin \emptyset$ with y in above equation.

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

• We can write it in the form of column vector matrix equation as;

$$P' = R \cdot P$$

$$\frac{x'}{[y']} = \frac{\cos \theta}{[\sin \theta - \sin \theta]} \cdot \frac{x}{[y]}$$

• Rotation about arbitrary point is illustrated in below figure.

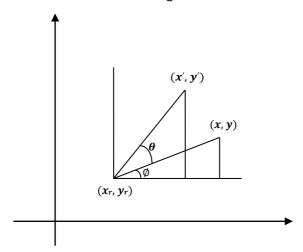


Fig. 3.3: - Rotation about pivot point.

• Transformation equation for rotation of a point about pivot point (x_r, y_r) is:

$$x' = x_r + (x - x_r) \cos \theta - (y - y_r) \sin \theta$$

$$y' = y_r + (x - x_r) \sin \theta + (y - y_r) \cos \theta$$

- These equations are differing from rotation about origin and its matrix representation is also different.
- Its matrix equation can be obtained by simple method that we will discuss later in this chapter.
- Rotation is also rigid body transformation so we need to rotate each point of object.
- **Example**: Locate the new position of the triangle [A (5, 4), B (8, 3), C (8, 8)] after its rotation by 90° clockwise about the origin.

As rotation is clockwise we will take $\theta = -90^{\circ}$.

$$P' = R \cdot P$$

$$P' = \begin{bmatrix} \cos(-90) & -\sin(-90) & 5 & 8 & 8 \\ \sin(-90) & \cos(-90) & \end{bmatrix} \begin{bmatrix} 5 & 8 & 8 \\ 4 & 3 & 8 \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 \\ -1 & 0 & 4 & 3 & 8 \\ 4 & 3 & 8 & 8 \end{bmatrix}$$

$$P' = \begin{bmatrix} 4 & 3 & 8 \\ -5 & -8 & -8 \end{bmatrix}$$

• Final coordinates after rotation are [A' (4, -5), B' (3, -8), C' (8, -8)].

Scaling

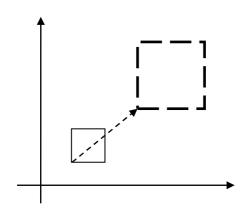


Fig. 3.4: - Scaling.

- It is a transformation that used to alter the size of an object.
- This operation is carried out by multiplying coordinate value (x, y) with scaling factor (s_x, s_y) respectively.
- So equation for scaling is given by:

$$x' = x \cdot s_x$$
$$y' = y \cdot s_y$$

• These equation can be represented in column vector matrix equation as:

$$P' = S \cdot P$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

- Any positive value can be assigned to (s_x, s_y) .
- Values less than 1 reduce the size while values greater than 1 enlarge the size of object, and object remains unchanged when values of both factor is 1.
- Same values of s_x and s_y will produce **Uniform Scaling**. And different values of s_x and s_y will produce **Differential Scaling**.
- Objects transformed with above equation are both scale and repositioned.
- Scaling factor with value less than 1 will move object closer to origin, while scaling factor with value greater than 1 will move object away from origin.
- We can control the position of object after scaling by keeping one position fixed called **Fix point** (x_f, y_f) that point will remain unchanged after the scaling transformation.



Fig. 3.5: - Fixed point scaling.

• Equation for scaling with fixed point position as (x_f, y_f) is:

$$x' = x_f + (x - x_f)s_x$$
 $y' = y_f + (y - y_f)s_y$
 $x' = x_f + xs_x - x_fs_x$ $y' = y_f + ys_y - y_fs_y$
 $x' = xs_x + x_f(1 - s_x)$ $y' = ys_y + y_f(1 - s_y)$

• Matrix equation for the same will discuss in later section.

 $P' = S \cdot P$

- Polygons are scaled by applying scaling at coordinates and redrawing while other body like circle and ellipse will scale using its defining parameters. For example ellipse will scale using its semi major axis, semi minor axis and center point scaling and redrawing at that position.
- Example: Consider square with left-bottom corner at (2, 2) and right-top corner at (6, 6) apply the transformation which makes its size half.

As we want size half so value of scale factor are $s_x = 0.5$, $s_y = 0.5$ and Coordinates of square are [A (2, 2), B (6, 2), C (6, 6), D (2, 6)].

$$P' = \begin{bmatrix} s_x & 0 \\ 0 & s_y & 2 & 2 & 6 & 6 & 2 \end{bmatrix}$$

$$0 & s_y & 2 & 2 & 6 & 6 & 2 \end{bmatrix}$$

$$P' = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 2 & 6 & 6 & 2 \\ 2 & 2 & 6 & 6 \end{bmatrix}$$

$$P' = \begin{bmatrix} 1 & 3 & 3 & 1 \\ 1 & 1 & 3 & 3 \end{bmatrix}$$

• Final coordinate after scaling are [A'(1, 1), B'(3, 1), C'(3, 3), D'(1, 3)].

Matrix Representation and homogeneous coordinates

- Many graphics application involves sequence of geometric transformations.
- For example in design and picture construction application we perform Translation, Rotation, and scaling to fit the picture components into their proper positions.
- For efficient processing we will reformulate transformation sequences.
- We have matrix representation of basic transformation and we can express it in the general matrix form as:

$$P' = M_1 \cdot P + M_2$$

Where P and P' are initial and final point position, M_1 contains rotation and scaling terms and M_2 contains translation al terms associated with pivot point, fixed point and reposition.

- ullet For efficient utilization we must calculate all sequence of transformation in one step and for that reason we reformulate above equation to eliminate the matrix addition associated with translation terms in matrix M_2 .
- We can combine that thing by expanding 2X2 matrix representation into 3X3 matrices.
- It will allows us to convert all transformation into matrix multiplication but we need to represent vertex position (x, y) with homogeneous coordinate triple (x_h, y_h, h) Where $x = \frac{xh}{h}$, $y = \frac{yh}{h}$ thus we can also write triple as $(h \cdot x, h \cdot y, h)$.
- For two dimensional geometric transformation we can take value of h is any positive number so we can get infinite homogeneous representation for coordinate value (x, y).
- But convenient choice is set h = 1 as it is multiplicative identity, than (x, y) is represented as (x, y, 1).
- Expressing coordinates in homogeneous coordinates form allows us to represent all geometric transformation equations as matrix multiplication.
- Let's see each representation with h = 1

Translation

$$P' = T_{(t,t_y)} \cdot P$$

$$x' 1 0 t_x x$$

$$[y'] = [0 1 t_y] [y]$$

$$1 0 0 1 1$$

NOTE: - Inverse of translation matrix is obtain by putting $-t_x \& -t_y$ instead of $t_x \& t_y$.

Rotation

$$P' = R_{(\theta)} \cdot P$$

$$x' \cos \theta - \sin \theta \quad 0 \quad x$$

$$[y'] = [\sin \theta \quad \cos \theta \quad 0] [y]$$

$$1 \quad 0 \quad 0 \quad 1 \quad 1$$

NOTE: - Inverse of rotation matrix is obtained by replacing θ by $-\theta$.

Scaling

$$\boldsymbol{P}' = \boldsymbol{S}_{(\boldsymbol{S}_{\boldsymbol{\mathcal{X}}}, \boldsymbol{S}_{\boldsymbol{\mathcal{Y}}})} \cdot \boldsymbol{P}$$

$$\begin{bmatrix}
 x' & s_x & 0 & 0 & x \\
 [y'] = [0 & s_y & 0][y] \\
 1 & 0 & 0 & 1 & 1
 \end{bmatrix}$$

NOTE: - Inverse of scaling matrix is obtained by replacing $s_x \& s_y$ by $\frac{1}{s_x} \& \frac{1}{s_y}$ respectively.

Composite Transformation

- We can set up a matrix for any sequence of transformations as a **composite transformation matrix** by calculating the matrix product of individual transformation.
- For column matrix representation of coordinate positions, we form composite transformations by multiplying matrices in order from right to left.

Translations

Two successive translations are performed as:

$$P' = T(t_{x2}, t_{y2}) \cdot \{T(t_{x1}, t_{y1}) \cdot P\}$$

$$P' = \{T(t_{x2}, t_{y2}) \cdot T(t_{x1}, t_{y1})\} \cdot P$$

$$1 \quad 0 \quad t_{x2} \quad 1 \quad 0 \quad t_{x1}$$

$$P' = \begin{bmatrix} 0 \quad 1 \quad t_{y2} \end{bmatrix} \begin{bmatrix} 0 \quad 1 \quad t_{y1} \end{bmatrix} \cdot P$$

$$0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$

$$1 \quad 0 \quad t_{x1} + t_{x2}$$

$$P' = \begin{bmatrix} 0 \quad 1 \quad t_{y1} + t_{y2} \end{bmatrix} \cdot P$$

$$0 \quad 0 \quad 1$$

$$P' = T(t_{x1} + t_{x2}, t_{y1} + t_{y2}) \cdot P\}$$

Here P' and P are column vector of final and initial point coordinate respectively.

This concept can be extended for any number of successive translations.

Example: Obtain the final coordinates after two translations on point p(2,3) with translation vector (4,3) and (-1,2) respectively.

$$P' = T(t_{x1} + t_{x2}, t_{y1} + t_{y2}) \cdot P$$

$$1 \quad 0 \quad t_{x1} + t_{x2} \qquad 1 \quad 0 \quad 4 + (-1) \quad 2$$

$$P' = \begin{bmatrix} 0 & 1 & t_{y1} + t_{y2} \end{bmatrix} \cdot P = \begin{bmatrix} 0 & 1 & 3 + 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \end{bmatrix}$$

$$0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1$$

$$1 \quad 0 \quad 3 \quad 2 \quad 5$$

$$P' = \begin{bmatrix} 0 \quad 1 \quad 5 \end{bmatrix} \cdot \begin{bmatrix} 3 \end{bmatrix} = \begin{bmatrix} 8 \end{bmatrix}$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1$$

Final Coordinates after translations are p(5, 8).

Rotations

• Two successive Rotations are performed as:

$$\begin{array}{l} P' = R(\theta_2) \cdot \{R(\theta_1) \cdot P\} \\ P' = \{R(\theta_2) \cdot R(\theta_1)\} \cdot P \\ \cos \theta_2 - \sin \theta_2 & 0 & \cos \theta_1 - \sin \theta_1 & 0 \\ P' = \begin{bmatrix} \sin \theta_2 & \cos \theta_2 & 0 \end{bmatrix} \begin{bmatrix} \sin \theta_1 & \cos \theta_1 & 0 \end{bmatrix} \cdot P \\ 0 & 0 & 1 & 0 & 0 & 1 \\ \cos \theta_2 \cos \theta_1 - \sin \theta_2 \sin \theta_1 & -\sin \theta_1 \cos \theta_2 - \sin \theta_2 \cos \theta_1 & 0 \\ P' = \begin{bmatrix} \sin \theta_1 \cos \theta_2 + \sin \theta_2 \cos \theta_1 & \cos \theta_2 \cos \theta_1 - \sin \theta_2 \sin \theta_1 & 0 \end{bmatrix} \cdot P \\ 0 & 0 & 1 & 1 \end{array}$$

$$cos(\theta_1 + \theta_2) - sin(\theta_1 + \theta_2) \quad 0$$

$$P' = [sin(\theta_1 + \theta_2) \quad cos(\theta_1 + \theta_2) \quad 0] \cdot P$$

$$0 \quad 0 \quad 1$$

$$P' = R(\theta_1 + \theta_2) \cdot P$$

Here P' and P are column vector of final and initial point coordinate respectively.

This concept can be extended for any number of successive rotations.

Example: Obtain the final coordinates after two rotations on point p(6,9) with rotation angles are 30° and 60° respectively.

$$P' = R(\theta_1 + \theta_2) \cdot P$$

$$cos(\theta_1 + \theta_2) - sin(\theta_1 + \theta_2) \quad 0$$

$$P' = [sin(\theta_1 + \theta_2) \quad cos(\theta_1 + \theta_2) \quad 0] \cdot \mathcal{B}$$

$$cos(30 + 60) - sin(30 + 60) \quad 0$$

$$P' = [sin(30 + 60) \quad cos(30 + 60) \quad 0] \cdot \mathcal{B}$$

$$0 \quad -1 \quad 0 \quad 6 \quad -9$$

$$P' = [1 \quad 0 \quad 0] \cdot [9] = [6]$$

$$0 \quad 0 \quad 1 \quad 1$$

Final Coordinates after rotations are p(-9, 6).

Scaling

Two successive scaling are performed as:

$$P' = S(s_{x2}, s_{y2}) \cdot \{S(s_{x1}, s_{y1}) \cdot P\}$$

$$P' = \{S(s_{x2}, s_{y2}) \cdot S(s_{x1}, s_{y1})\} \cdot P$$

$$s_{x2} \quad 0 \quad 0 \quad s_{x1} \quad 0 \quad 0$$

$$P' = \begin{bmatrix} 0 & s_{y2} & 0 \end{bmatrix} \begin{bmatrix} 0 & s_{y1} & 0 \end{bmatrix} \cdot P$$

$$0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$

$$s_{x1} \cdot s_{x2} \quad 0 \quad 0$$

$$P' = \begin{bmatrix} 0 & s_{y1} \cdot s_{y2} & 0 \end{bmatrix} \cdot P$$

$$0 \quad 0 \quad 1$$

$$P' = S(s_{x1} \cdot s_{x2}, s_{y1} \cdot s_{y2}) \cdot P$$

$$F = 3(3x_1 \cdot 3x_2, 3y_1 \cdot 3y_2) \cdot F$$

Here P' and P are column vector of final and initial point coordinate respectively.

This concept can be extended for any number of successive scaling.

Example: Obtain the final coordinates after two scaling on line pq [p(2,2), q(8,8)] with scaling factors are (2, 2) and (3, 3) respectively.

$$P' = S(s_{x1} \cdot s_{x2}, s_{y1} \cdot s_{y2}) \cdot P$$

$$P' = \begin{bmatrix} s_{x1} \cdot s_{x2} & 0 & 0 & 2 \cdot 3 & 0 & 0 \\ 0 & s_{y1} \cdot s_{y2} & 0 & P = \begin{bmatrix} 2 \cdot 3 & 0 & 0 \\ 0 & 2 \cdot 3 & 0 \end{bmatrix} \cdot P$$

$$0 & 0 & 1 & 0 & 0 \cdot 1$$

$$P' = \begin{bmatrix} 0 & 0 & 2 & 8 & 12 & 48 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Final Coordinates after rotations are $p_1(12, 12)$ and $q_2(48, 48)$.

General Pivot-Point Rotation

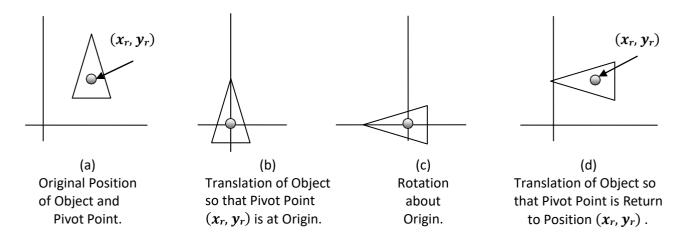


Fig. 3.6: - General pivot point rotation.

- For rotating object about arbitrary point called pivot point we need to apply following sequence of transformation.
 - 1. Translate the object so that the pivot-point coincides with the coordinate origin.
 - 2. Rotate the object about the coordinate origin with specified angle.
 - 3. Translate the object so that the pivot-point is returned to its original position (i.e. Inverse of step-1).
- Let's find matrix equation for this

$$P' = T(x_r, y_r) \cdot [R(\theta) \cdot \{T(-x_r, -y_r) \cdot P\}]$$

$$P' = \{T(x_r, y_r) \cdot R(\theta) \cdot T(-x_r, -y_r)\} \cdot P$$

$$1 \quad 0 \quad x_r \quad \cos \theta \quad -\sin \theta \quad 0 \quad 1 \quad 0 \quad -x_r$$

$$P' = \begin{bmatrix} 0 \quad 1 \quad y_r \end{bmatrix} \begin{bmatrix} \sin \theta & \cos \theta & 0 \end{bmatrix} \begin{bmatrix} 0 \quad 1 \quad -y_r \end{bmatrix} \cdot P$$

$$0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$

$$\cos \theta \quad -\sin \theta \quad x_r (1 - \cos \theta) + y_r \sin \theta$$

$$P' = \begin{bmatrix} \sin \theta & \cos \theta & y_r (1 - \cos \theta) - x_r \sin \theta \end{bmatrix} \cdot P$$

$$0 \quad 0 \quad 1$$

$$P' = R(x_r, y_r \theta) \cdot P$$

Here P' and P are column vector of final and initial point coordinate respectively and (x_r, y_r) are the coordinates of pivot-point.

• **Example**: - Locate the new position of the triangle [A (5, 4), B (8, 3), C (8, 8)] after its rotation by 90° clockwise about the centroid.

Pivot point is centroid of the triangle so:

$$\frac{x}{r} = \frac{3+3+8}{3} = 7, \qquad \frac{y}{r} = \frac{4+3+8}{3} = 5$$

As rotation is clockwise we will take $\theta = -90^{\circ}$.

$$P = R_{(x,y,\theta)} \cdot P$$

$$\cos \theta - \sin \theta \quad x_r (1 - \cos \theta) + y_r \sin \theta \quad 5 \quad 8 \quad 8$$

$$P' = [\sin \theta \quad \cos \theta \quad y_r (1 - \cos \theta) - x_r \sin \theta] [4 \quad 3 \quad 8]$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1$$

$$\cos(-90) \quad -\sin(-90) \quad 7(1 - \cos(-90)) + 5\sin(-90) \quad 5 \quad 8 \quad 8$$

$$P' = [\sin(-90) \quad \cos(-90) \quad 5(1 - \cos(-90)) - 7\sin(-90)] [4 \quad 3 \quad 8]$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1$$

$$0 \quad 1 \quad 7(1 - 0) - 5(1) \quad 5 \quad 8 \quad 8$$

$$P' = [-1 \quad 0 \quad 5(1 - 0) + 7(1)] [4 \quad 3 \quad 8]$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1$$

$$0 \quad 1 \quad 2 \quad 5 \quad 8 \quad 8$$

$$P' = [-1 \quad 0 \quad 12] [4 \quad 3 \quad 8]$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1$$

$$P' = \begin{bmatrix} 11 & 13 & 18 \\ 7 & 4 & 4 \end{bmatrix}$$

$$1 & 1 & 1$$

• Final coordinates after rotation are [A' (11, 7), B' (13, 4), C' (18,4)].

General Fixed-Point Scaling

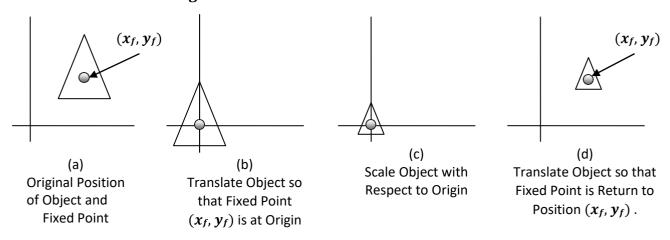


Fig. 3.7: - General fixed point scaling.

- For scaling object with position of one point called fixed point will remains same, we need to apply following sequence of transformation.
 - 1. Translate the object so that the fixed-point coincides with the coordinate origin.
 - 2. Scale the object with respect to the coordinate origin with specified scale factors.
 - 3. Translate the object so that the fixed-point is returned to its original position (i.e. Inverse of step-1).
- Let's find matrix equation for this

$$P' = T(x_f, y_f) \cdot [S(s_x, s_y) \cdot \{T(-x_f, -y_f) \cdot P\}]$$

$$P' = \{T(x_f, y_f) \cdot S(s_x, s_y) \cdot T(-x_f, -y_f)\} \cdot P$$

$$1 \quad 0 \quad x_f \quad s_x \quad 0 \quad 0 \quad 1 \quad 0 \quad -x_f$$

$$P' = [0 \quad 1 \quad y_f] \quad [0 \quad s_y \quad 0] \quad [0 \quad 1 \quad -y_f] \cdot P$$

$$0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$

$$s_x \quad 0 \quad x_f (1 - s_x)$$

$$P' = [0 \quad s_y \quad y_f (1 - s_y)] \cdot P$$

$$0 \quad 0 \quad 1$$

$$P' = S(x_f, y_f, s_x, s_y) \cdot P$$

Here P' and P are column vector of final and initial point coordinate respectively and (x_f, y_f) are the coordinates of fixed-point.

• **Example**: - Consider square with left-bottom corner at (2, 2) and right-top corner at (6, 6) apply the transformation which makes its size half such that its center remains same.

Fixed point is center of square so:

$$x_f = 2 + \frac{6-2}{2}, \quad y_f = 2 + \frac{6-2}{2}$$

As we want size half so value of scale factor are $s_x = 0.5$, $s_y = 0.5$ and Coordinates of square are [A (2, 2), B (6, 2), C (6, 6), D (2, 6)].

$$P' = S(x_f, y_f, s_x, s_y) \cdot P$$

$$s_x \quad 0 \quad x_f(1 - s_x) \quad 2 \quad 6 \quad 6 \quad 2$$

$$P' = \begin{bmatrix} 0 \quad s_y \quad y_f(1 - s_y) \end{bmatrix} \begin{bmatrix} 2 \quad 2 \quad 6 \quad 6 \end{bmatrix}$$

$$0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

• Final coordinate after scaling are [A'(3, 3), B'(5, 3), C'(5, 5), D'(3, 5)]

General Scaling Directions

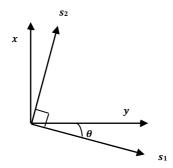


Fig. 3.8: - General scaling direction.

- Parameter s_x and s_y scale the object along x and y directions. We can scale an object in other directions by rotating the object to align the desired scaling directions with the coordinate axes before applying the scaling transformation.
- Suppose we apply scaling factor s_1 and s_2 in direction shown in figure than we will apply following transformations.
 - 1. Perform a rotation so that the direction for s_1 and s_2 coincide with x and y axes.
 - 2. Scale the object with specified scale factors.
 - 3. Perform opposite rotation to return points to their original orientations. (i.e. Inverse of step-1).
- Let's find matrix equation for this

$$P' = R^{-1}(\theta) \cdot [S(s_1, s_2) \cdot \{R(\theta) \cdot P\}]$$

$$P' = \{R^{-1}(\theta) \cdot S(s_1, s_2) \cdot R(\theta)\} \cdot P$$

$$\cos \theta \quad \sin \theta \quad 0 \quad s_x \quad 0 \quad 0 \quad \cos \theta \quad -\sin \theta \quad 0$$

$$P' = [-\sin \theta \quad \cos \theta \quad 0] \quad [0 \quad s_y \quad 0] \quad [\sin \theta \quad \cos \theta \quad 0] \cdot P$$

$$0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1$$

$$s_1 \cos^2 \theta + s_2 \sin^2 \theta \quad (s_2 - s_1) \cos \theta \sin \theta \quad 0$$

$$P' = [(s_2 - s_1) \cos \theta \sin \theta \quad s_1 \sin^2 \theta + s_2 \cos^2 \theta \quad 0] \cdot P$$

$$0 \quad 0 \quad 1$$

Here P' and P are column vector of final and initial point coordinate respectively and θ is the angle between actual scaling direction and our standard coordinate axes.

Other Transformation

• Some package provides few additional transformations which are useful in certain applications. Two such transformations are reflection and shear.

Reflection

• A reflection is a transformation that produces a mirror image of an object.

- The mirror image for a two –dimensional reflection is generated relative to an **axis of reflection** by rotating the object 180° about the reflection axis.
- Reflection gives image based on position of axis of reflection. Transformation matrix for few positions are discussed here.

<u>Transformation matrix for reflection about the line y = 0, the x axis.</u>

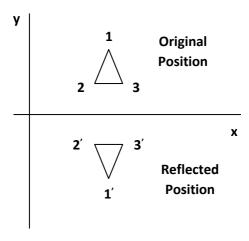


Fig. 3.9: - Reflection about x - axis.

• This transformation keeps x values are same, but flips (Change the sign) y values of coordinate positions.

$$\begin{array}{cccc}
1 & 0 & 0 \\
[0 & -1 & 0] \\
0 & 0 & 1
\end{array}$$

<u>Transformation matrix for reflection about the line x = 0, the y axis.</u>

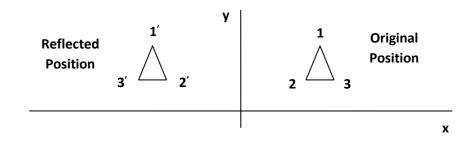


Fig. 3.10: - Reflection about y - axis.

• This transformation keeps y values are same, but flips (Change the sign) x values of coordinate positions.

$$\begin{array}{cccc}
 -1 & 0 & 0 \\
 [0 & 1 & 0] \\
 0 & 0 & 1
 \end{array}$$

<u>Transformation matrix for reflection about the *Origin*.</u>

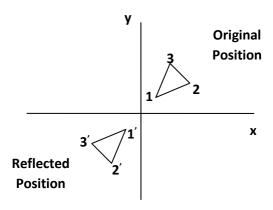


Fig. 3.11: - Reflection about origin.

• This transformation flips (Change the sign) x and y both values of coordinate positions.

$$\begin{array}{cccc} -1 & 0 & 0 \\ [0 & -1 & 0] \\ 0 & 0 & 1 \end{array}$$

<u>Transformation matrix for reflection about the line x = y.</u>

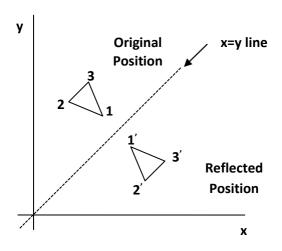


Fig. 3.12: - Reflection about x=y line.

• This transformation interchange x and y values of coordinate positions.

$$\begin{array}{cccc} 0 & 1 & 0 \\ [1 & 0 & 0] \\ 0 & 0 & 1 \end{array}$$

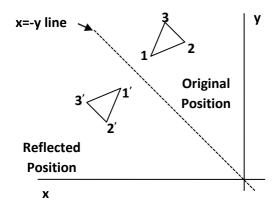


Fig. 3.12: - Reflection about x=-y line.

• This transformation interchange x and y values of coordinate positions.

$$\begin{array}{ccc} 0 & -1 & 0 \\ [-1 & 0 & 0] \\ 0 & 0 & 1 \end{array}$$

• **Example**: - Find the coordinates after reflection of the triangle [A (10, 10), B (15, 15), C (20, 10)] about x axis.

$$P' = \begin{bmatrix} 1 & 0 & 0 & 10 & 15 & 20 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 10 & 15 & 10 \end{bmatrix}$$

$$0 & 0 & 1 & 1 & 1 & 1$$

$$10 & 15 & 20$$

$$P' = \begin{bmatrix} -10 & -15 & -10 \end{bmatrix}$$

• Final coordinate after reflection are [A' (10, -10), B' (15, -15), C' (20, -10)]

Shear

- A transformation that distorts the shape of an object such that the transformed shape appears as if the object were composed of internal layers that had been caused to slide over each other is called **shear**.
- Two common shearing transformations are those that shift coordinate x values and those that shift y values.

Shear in x - direction.

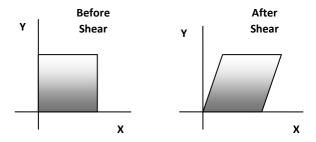


Fig. 3.13: - Shear in x-direction.

• Shear relative to x - axis that is y = 0 line can be produced by following equation:

$$x' = x + sh_x \cdot y , \qquad y' = y$$

• Transformation matrix for that is:

$$\begin{array}{cccc}
1 & sh_x & 0 \\
[0 & 1 & 0] \\
0 & 0 & 1
\end{array}$$

Here sh_x is shear parameter. We can assign any real value to sh_x .

• We can generate x - direction shear relative to other reference line $y = y_{ref}$ with following equation:

$$x' = x + sh_x \cdot (y - y_{ref}), \qquad y' = y$$

• Transformation matrix for that is:

$$\begin{bmatrix} 1 & sh_x & -sh_x \cdot y_{ref} \\ [0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• **Example**: - Shear the unit square in x direction with shear parameter $\frac{1}{2}$ relative to line y = -1.

Here
$$y_{ref} = -1$$
 and $sh_x = 0.5$

Coordinates of unit square are [A (0, 0), B (1, 0), C (1, 1), D (0, 1)].

• Final coordinate after shear are [A' (0.5, 0), B' (1.5, 0), C' (2, 1), D' (1, 1)]

Shear in y - direction.

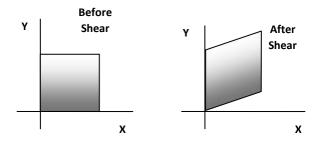


Fig. 3.14: - Shear in y-direction.

• Shear relative to y - axis that is x = 0 line can be produced by following equation:

$$x' = x$$
, $y' = y + sh_y \cdot x$

• Transformation matrix for that is:

$$\begin{bmatrix} 1 & 0 & 0 \\ [sh_y & 1 & 0] \\ 0 & 0 & 1 \end{bmatrix}$$

Here sh_y is shear parameter. We can assign any real value to sh_y .

• We can generate y - direction shear relative to other reference line $x = x_{ref}$ with following equation:

$$x' = x$$
, $y' = y + sh_y \cdot (x - x_{ref})$

• Transformation matrix for that is:

$$\begin{bmatrix}
1 & 0 & 0 \\
sh_y & 1 & -sh_y \cdot x_{ref} \\
0 & 0 & 1
\end{bmatrix}$$

• **Example**: - Shear the unit square in y direction with shear parameter $\frac{1}{2}$ relative to line x = -1.

Here
$$x_{ref} = -1$$
 and $sh_y = 0.5$

Coordinates of unit square are [A (0, 0), B (1, 0), C (1, 1), D (0, 1)].

$$P' = [sh_y \quad 1 \quad -sh_y \cdot x_{ref}] \begin{bmatrix} 0 \quad 0 \quad 1 \quad 1 \quad 0 \\ 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\ P' = [0.5 \quad 1 \quad 0.5] \begin{bmatrix} 0 \quad 0 \quad 1 \quad 1 \\ 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \\ 0 \quad 1 \quad 1 \quad 0 \\ P' = [0.5 \quad 1 \quad 2 \quad 1.5] \\ 1 \quad 1 \quad 1 \quad 1 \quad 1 \end{bmatrix}$$

Final coordinate after shear are [A'(0, 0.5), B'(1, 1), C'(1, 2), D'(0, 1.5)]