Operating System : Scheduling Algorithm

Prepared By: Dr. Sanjeev Gangwar Assistant Professor Department of Computer Applications VBS Purvanchal University, Jaunpur, Uttar Pradesh

Scheduling Algorithm

- Basic Concepts
- First-Come, First-Served (FCFS) Scheduling Algorithm
- Shortest-Job-First (SJF) Scheduling Algorithm
 - Nonpreemptive SJF Scheduling
 - Preemptive SJF Scheduling
- Priority Scheduling Algorithm
 - Nonpreemptive Scheduling Algorithm
 - Preemptive Scheduling Algorithm
- Round-Robin Scheduling Algorithm
- Advantages of Round-Robin Scheduling Algorithm
- Disadvantages of Round-Robin Scheduling Algorithm

2

Scheduling Algorithm

- The scheduling algorithm deals with the problem of deciding which of the process in the ready queue is to be allocated the CPU.
- There are many CPU scheduling algorithm as shown below.
 - First-Come, First- Served (FCFS) scheduling algorithm
 - Shortest -Job –First (SJF) scheduling algorithm
 - Priority scheduling algorithm
 - > Round- Robin scheduling algorithm

- First-Come, First-Served Scheduling Algorithm is nonpreemptive algorithm.
- It is the simplest of all the scheduling algorithms.
- The key concept of this algorithm is "The process which comes first in the ready queue will allocate the CPU first".
- The next process will allocate the CPU only after the previous gets fully executed.

Example-1:

Sr. No	Process	Execution Time/ Burst Time(ms)
1	ро	10
2	p1	4
3	p2	8
4	р3	6

If the arrival time is not given. We can assume arrival time of all process is 0.

Gantt Chart:

P	0	P1	P2		P3
0	10		14	22	28

Completion Time:

P0 = 10, P1 = 14, P2 = 22, P3 = 28

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT)

Turnaround Time(TAT) of each process

P0: 10 - 0 = 10 ms P1: 14 - 0 = 14 ms P2: 22 - 0 = 22 ms P3: 28 - 0 = 28 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes

Average Turnaround Time(**ATAT**) = (10+14+22+28) / 4 = 18.5 ms

Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT)

Waiting Time(WT) of each process

P0: 10 - 10 = 0 ms P1: 14 - 4 = 10 ms P2: 22 - 8 = 14 msP3: 28 - 6 = 22 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes

Average Waiting Time(AWT) = (0+10+14+22)/4 = 11.5 ms

Example- 2:

Sr. No	Process	Arrival Time	Execution Time/ Burst Time(ms)
1	ро	0	5
2	р1	4	3
3	p2	6	7
4	Р3	2	2

When Arrival Time is given Gantt Chart:

Po		P3	P1		P2
0	5		7	10	17

Completion Time:

P0 = 5, P1 =10, P2 = 17, P3 =7

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT)

Turnaround Time(TAT) of each process

P0: 5-0 = 5 ms P1: 10-4 = 6 ms P2: 17-6 = 11 msP3: 7-2 = 5 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes

Average Turnaround Time(**ATAT**) = (5+6+11+5) / 4 = 6.75 ms

Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT)

Waiting Time(WT) of each process

P0: 5-5 = 0 ms P1: 6-3 = 3 ms P2: 11-7 = 4 msP3: 5-2 = 3 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes

Average Waiting Time(**AWT**) = (0+3+4+3)/4 = 2.5 ms

SJF Scheduling Algorithm

- Shortest Job First scheduling(SJF) works on the process with the shortest burst time.
- SJF is the best approach to minimize waiting time.
- SJF is a Greedy Algorithm.

H

- In case of a tie, it is broken by FCFS scheduling algorithm.
- Predicting the time the process will use on its next schedule:

	t(n+1)	= w * t(n) + (1 - w) * T(n)
ere:	t(n+1)	is time of next burst.
	t(n)	is time of current burst.
	T(n)	is average of all previous bursts .
	W	is a weighting factor emphasizing current or previous bursts.

Types of SJF Scheduling Algorithm

SJF scheduling algorithm

• SJF scheduling algorithm can be categorized into two parts.

Non-Preemptive SJF

Preemptive SJF Shortest Remaining Time First (SRTF)

SJF Scheduling Algorithm

- The SJF algorithm may be either preemptive or nonpreemptive
- A preemptive SJF will preempt this currently executing process and starts the execution of newly entered process.
- Nonpreemptive SJF will allow the currently executing process to complete its burst time without any interruption in its execution.
- Preemptive SJF scheduling is sometimes called Shortest-Remaining-Time-First (SRTF) scheduling

Nonpreemptive SJF Scheduling Algorithm

Sr. No	Process	Execution Time/ Burst Time(ms)
1	ро	10
2	p1	4
3	p2	8
4	р3	6

If the arrival time is not given. We can assume arrival time of all process is 0. Gantt Chart:

P1	P ₃	P2		Ро
0	4	10	18	2

Nonpreemptive SJF Scheduling Algorithm

Completion Time:

P0 = 28, P1 = 4, P2 = 18 P3 = 10

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT)

Turnaround Time(TAT) of each process

P0: 28 - 0 = 28 ms P1: 4 - 0 = 4 ms P2: 18 - 0 = 18 ms P3: 10 - 0 = 10 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes

Average Turnaround Time(**ATAT**) = (28+4+18+10) / 4 = 15 ms

Nonpreemptive SJF Scheduling Algorithm

Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT)

Waiting Time(WT) of each process

P0: 28-10 = 18 msP1: 4-4 = 0 msP2: 18-8 = 10 msP3: 10-6 = 4 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes Average Waiting Time(AWT) = (18+0+10+4) / 4 = 8 ms

Preemptive SJF Algorithm

Sr. No	Process	Arrival Time	Execution Time/ Burst Time(ms)
1	ро	0	8
2	рı	1	4
3	p2	2	9
4	Р3	3	5

Gantt Chart

	P1	P2		P4	P1	F	° 3
0	1		5	10		17	26

Preemptive SJF Scheduling Algorithm

Completion Time:

P0 =17, P1 = 5, P2 =26 P3 = 10

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT)

Turnaround Time(TAT) of each process

P0: 17 - 0 = 17 ms P1: 5 - 1 = 4 ms P2: 26 - 2 = 24 ms P3: 10 - 3 = 7 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes Average Turnaround Time(ATAT) = (17+4+24+7) / 4 = 13 ms

Preemptive SJF Scheduling Algorithm

Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT)

Waiting Time(WT) of each process P0 : 17-8 = 9 msP1 : 4-4 = 0 msP2 : 24-9 = 15 msP3 : 7-5 = 2 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes

Average Waiting Time(**AWT**) = (9+0+15+2)/4 = 6.5 ms

Priority Scheduling

- A priority is associated with each process and the CPU is allocated to the process with the highest priority.
- Equal priority processes are scheduled in FCFS order.
- Priorities are generally some fixed range of numbers such as 0 to 7. some system represents low numbers to represent low priority while others use low numbers to represent high priority.

Sr. No	Process	Burst time	Priority
1	P1	10	3
2	P2	1	1
3	P3	2	4
4	P4	1	5
5	P ₅	5	2
antt (Chart:		

Completion Time:

P1 = 16, P2 =1, P3 = 18, P4 =19, P5=6

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT)

Turnaround Time(TAT) of each process

P1: 16 - 0 = 16 ms P2: 1 - 0 = 1 ms P3: 18 - 0 = 18 ms P4: 19 - 0 = 19 ms P5: 6 - 0 = 6 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes

Average Turnaround Time(**ATAT**) = (16+1+18+19+6) / 5 = 12 ms

Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT)

Waiting Time(WT) of each process

P1: 16-10 = 6 ms P2: 1-1 = 0 ms P3: 18-2 = 16 ms P4: 19-1 = 18 ms P5: 6-5 = 1 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes
Average Waiting Time(AWT) = (6+0+16+18+1) / 5 = 8.2 ms

Note:- Priority Scheduling is Either Preemptive or Non-preemptive

Preemptive Priority Scheduling

Sr. No	Process	Burst time	Priority	Arrival Time
1	P1	10	3	0
2	P2	5	2	1
3	P3	2	1	2

Gantt Chart:

	P1	P2	P3	P2	P1	
0	1	2	4		8	17

Completion Time:

P1 = 17, P2 = 8, P3 = 4

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT) Turnaround Time(TAT) of each process

P1: 17 - 0 = 17 ms P2: 8 - 1 = 7 ms P3: 4 - 2 = 2 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes

Average Turnaround Time(ATAT) = (17+7+2)/3 = 8.6 ms

Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT)

Waiting Time(WT) of each process

P1: 17 - 10 = 7 ms P2: 7 - 5 = 2 ms P3: 2 - 2 = 0 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes

Average Waiting Time(AWT) = (7+2+0)/3 = 3 ms Note:-

- if the two process having the same priority then process with shorter burst time will be executed.
- If the process having the same burst time then process will be executed on the basis of FCFS scheduling.

Starvation and Ageing

- **Starvation** or indefinite blocking is phenomenon associated with the Priority scheduling algorithms, in which a process ready to run for CPU can wait indefinitely because of low priority.
- To avoid starvation, we use the concept of **Aging.** In Aging, after some fixed amount of time quantum, we increase the priority of the low priority processes. By doing so, as time passes, the lower priority process becomes a higher priority process.

It is designed especially for time sharing systems. Here CPU switches between the processes. When the time quantum expired, the CPU switched to another job. A small unit of time, called a time quantum or time slice. A time quantum is generally from 10 to 100 ms. The time quantum is generally depending on OS. Here ready queue is a circular queue. CPU scheduler picks the first process from ready queue, sets timer to interrupt after one time quantum and dispatches the process.

Sr. No	Process	Burst time
1	P1	10
2	P2	1
3	P3	2
4	P4	1
5	P5	5

Time Quantum is 2 ms.

Gantt Chart:

Completion Time:

P1 = 19, P2 = 3, P3 = 5, P4 = 6, P5 = 15

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT) Turnaround Time(TAT) of each process

P1: 19 - 0 = 19 ms P2: 3 - 0 = 3 ms P3: 5 - 0 = 5 ms P4: 6 - 0 = 6 ms P5: 15 - 0 = 15 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes Average Turnaround Time(ATAT) = (19+3+5+6+15) / 5 = 9.6 ms

Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT) Waiting Time(WT) of each process

P1: 19 - 10 = 9 ms P2: 3 - 1 = 2 ms P3: 5 - 2 = 3 ms P4: 6 - 1 = 5 ms P5: 15 - 5 = 10 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes
Average Waiting Time(AWT) = (9+2+3+5+10) / 5 = 5.8 ms

when arrival time is given

S.No.	Process	Arrival Time (AT)	Burst Time (BT)
1	P1	0	8
2	P2	5	2
3	P3	1	7
4	P4	6	3
4	P5	8	5

Time Quantum (TQ)=3 ms.

Gantt Chart:

Completion Time:

P1 = 22, P2 =11, P3 = 23, P4= 14, P5 = 25

Turnaround Time(TAT) = Completion Time(CT) – Arrival Time(AT)

Turnaround Time(TAT) of each process

P1: 22 - 0 = 22 ms P2: 11 - 5 = 6 ms P3: 23 - 1 = 22 ms P4: 14 - 6 = 8 ms P5: 25 - 8 = 17 ms

Average Turnaround Time(ATAT) = Total turn around time of all processes / Total no of processes Average Turnaround Time(ATAT) = (22+6+22+8+17)/5 = 15 ms

Round-Robin Scheduling Algorithm Waiting Time(WT) = Turnaround Time(TAT) – Burst Time(BT) Waiting Time(WT) of each process

P1: 22 - 8 = 14 ms P2: 6 - 2 = 4 ms P3: 22 - 7 = 15 ms P4: 8 - 3 = 5 ms P5: 17 - 5 = 12 ms

Average Waiting Time(AWT) = Total waiting time of all processes / Total no of processes

Average Waiting Time(AWT) = (14+4+15+5+12) / 5 = 10 ms

Advantages of Round-Robin Scheduling

- It doesn't face the issues of starvation effect.
- All the jobs get a fair allocation of CPU.
- It deals with all process without any priority
- This scheduling method does not depend upon burst time. That's why it is easily implementable on the system.
- Once a process is executed for a specific set of the period, the process is preempted, and another process executes for that given time period.
- It gives the best performance in terms of average response time.

Disadvantages of Round-Robin Scheduling

- If slicing time of OS is low, the processor output will be reduced.
- This method spends more time on context switching
- Its performance heavily depends on time quantum.
- Priorities cannot be set for the processes.
- Round-robin scheduling doesn't give special priority to more important tasks.
- Lower time quantum results in higher the context switching overhead in the system.

References

- Abraham Silberschatz, Galvin & Gagne, Operating System Concepts, John Wiley & Sons, INC.
- Harvay M.Deital, Introduction to Operating System, Addition Wesley Publication Company.
- Andrew S.Tanenbaum, Operating System Design and Implementation, PHI
- Vijay Shukla, Operating System, S.K. Kataria & Sons

Thank You