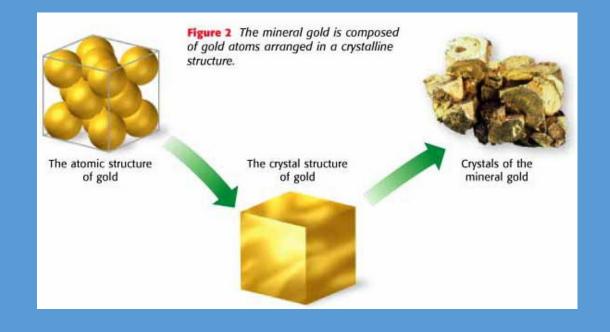
Mineral

What is a Mineral?

A mineral is a naturally occurring, homogeneous inorganic solid that has a crystal structure and a definite chemical composition.

Pyromorphite


For a substance to be a mineral it must have 5 characteristics:

- Formed by <u>natural</u> processes on or inside Earth- no help from humans
- Is <u>inorganic</u>- was never alive. For example, although coal was formed naturally in earth's crust it came from plants and is therefore, not a mineral
- 3. Is a <u>solid</u>, with definite volume and shape. Liquids cannot be minerals.

4. Minerals always contains certain elements that give it a <u>unique</u> <u>chemical composition</u> (makeup). Some minerals are compounds which are made up of more than one element.

5. Have a **<u>crystalline shape</u>**- the particles of a mineral line up in a pattern that repeats forming a crystal.

Crystal- solid with atoms arranged in an orderly, repeating pattern

How do minerals form?

There are 2 ways that crystals form:

- The cooling of hot, liquid rock called <u>magma</u> causes compounds to combine
 - Magma cools <u>slowly</u>= crystals are <u>large</u>
 - Magma cools <u>quickly</u>= crystals are <u>small</u>
- The evaporation of water that has minerals dissolved in it

Properties of Minerals

Properties of Minerals

The following physical properties of minerals can be easily used to identify a mineral:

- 1.Colour
- 2.Streak
- 3.Hardness
- 4. Cleavage / Fracture / Parting
- 5.Crystalline Structure
- 6.Diaphaneity or Amount of Transparency
- 7.Tenacity
- 8.Magnetism
- 9.Luster
- 10.Odor
- 11.Taste
- 12.Specific Gravity

1.Colour

Minerals are coloured because certain wavelengths of light are absorbed, and the mineral colour results from the combination of those wavelength which reach the eye--*if light is not absorbed, the mineral is colorless in reflected or refracted light and is black if all wavelength of light are absorbed*

Idiochromatic colour-mineral colour caused by the presence of element(s) in the chemical composition of the mineral -*Cu in azurite* (*blue*); *Cu in malachite (green); Mn in rhodonite and rhodochrosite* (*pink*)

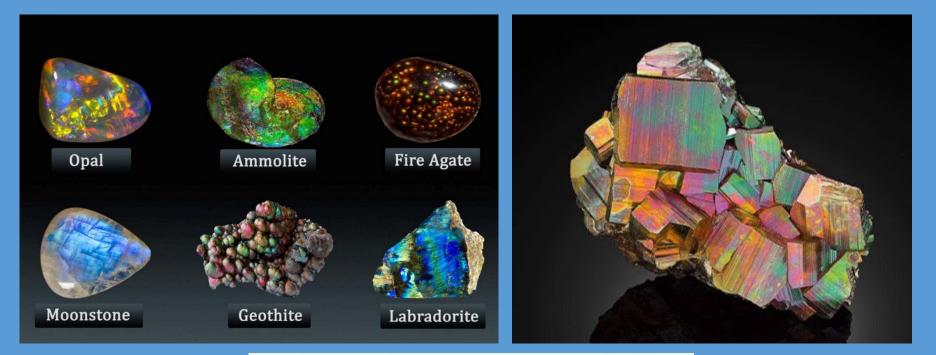
<u>Chromaphore (Chromophores are the parts of the molecule that</u> <u>absorb colour) colour-</u> Caused by the presence of a small concentration of element(s) (Fe, Mn, Cu, Cr, Co, Ni, V) or which do not comprise the chemical composition of the mineral, these elements are called chromophores *Cr and V in beryl--deep green of emerald; Fe in quartz-purple of amethyst; V in zoisite--rich sapphire blue* Idiochromatic and Chromaphore elements can cause colour by the following mechanisms:

1. <u>Crystal Field Transitions:</u> wavelength of light quanta are absorbed by "d" electrons in transition elements resulting in transmissions of wavelengths of light giving the mineral it's color

Transition Element	Mineral	Resulting Color of Mineral
Cr ⁺³	beryl-Be ₃ Al ₂ Si ₆ O ₁₈ emerald	green
Cr ⁺³	corundum-Al ₂ O ₃ ruby	red
Mn ⁺²	beryl-Be ₃ Al ₂ Si ₆ O ₁₈ -morganite	pink
Fe ⁺²	olivine-(Mg,Fe) ₂ SiO ₄ -peridot	yellow-green

2.Molecular Orbital Transitions : metal ions undergo charge transitions

Transition	<u>Mineral</u> <u>Resul</u>	ting Color of Mineral
$Fe^{+2} > Fe^{+3}$	beryl-Be ₃ Al ₂ Si ₆ O ₁₈ -aquamarine	blue to yellow
$Fe^{+2} > Ti^{+4}$	corundum-Al ₂ O ₃ -sapphire	blue

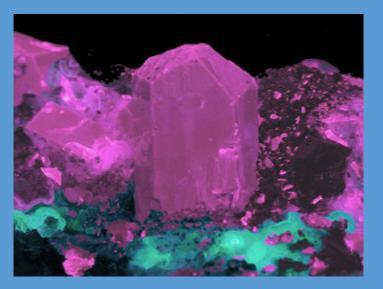

Inclusions of Other Minerals

green quartz caused by chlorite dispersions black calcite caused by MnO_2 dispersions red color in many minerals caused by hematite dispersions

Special Mineral Properties Related to Light, Heat, and Electricity

1. Play of Colors (Iridescence) : results from diffracted and reflected light from closely spaced fractures, cleavage planes, exsolution, or minute inclusions in parallel orientation. <u>in opa</u>l--reflected light from submicroscopic layers of spherical SiO₂ particles

labradorite--reflected light from exsolution laminae



2 –Asterism: a star like figure appearing on the surface of a mineral caused by reflection or scattering of light off needle inclusions of minerals which parallel crystallographic axes. <u>rubies and sapphires</u>-- corundum

Luminescence: a special glowing of the mineral caused by the presence of impurities (activators) in a mineral

Fluorescence: emission of light wavelength caused by electron excitation in transition metal during bombardment of a mineral with ultraviolet or x-rays--examples are: *some specimens of fluorite, scheelite, calcite*

Phosphorescence: continuous emission of light wavelength after the excitation source is removed.
Thermoluminescence: emissions of light wavelengths when mineral is subjected to heat below the "red hot" temperature--examples are: *some specimens of calcite and apatite*

Certain minerals develops an electrical charge when subjected either to a temperature change (*Pyroelectric*, mineral) or to a change in stress (*Piezoelectric* minerals)

Tourmaline is an example of a Pyroelectric mineral.

Quartz is a Piezoelectric mineral.

Note: Colour is not useful as a diagnostic property