

SUBODH KUMAR

M.TECH NIT SURATHKAL KARNATAKA

Properties of fluids

(i) Density or mass density (ρ) :

$$\rho = \frac{Mass \ of fluid}{Volume \ of \ fluid}$$

- Density of water is 1 gm/cm³ or 1000 Kg/m³
- (ii) Specific weight or weight density:

 $w = \frac{weight \ of \ fluid}{volume \ of \ fluid}$

 $w = \frac{Mass \ of \ fluid \times Acceleration \ due \ to \ gravity}{Volume \ of \ fluid}$

$$w = \frac{Mass \ of \ fluid \times g}{volume \ of \ fluid}$$
$$w = \rho \times g$$

• A commonly used value is the specific weight of water on Earth at 4°C, which is 9.807 kN/m³

(iii) Specific volume :

 $v = \frac{Volume \ of \ fluid}{Mass \ of \ fuild}$

$$v = -\frac{1}{\rho}$$

1

• Unit of specific volume is m³/kg

(iv) Specific gravity (relative density):

- Specific gravity is defined as the ratio of the density of a fluid to density of a standard fluid.
- For liquids ,the standard fluid is taken water and for gases the standard fluid is taken air.
- It is dimensionless quantity and is denoted by the symbol s.

$$S$$
 (for liquids) = $\frac{density of liquid}{(density)of water}$

S (for gases) = $\frac{(density)of gas}{(density) of air}$

(s of mercury = 13.6)

Question:

10 m³ of mercury weight 136 × 10⁴ N. calculate its specific weight ,mass density, specific volume and specific gravity.

(i) Specific weight =
$$\frac{weight}{volume}$$
 (volume = 10m³ , weight = 136 × 10⁴)
= $\frac{136 \times 10^4}{10}$
= 136000N/m³
(ii) Mass density (ρ) = $\frac{w}{g}$
= $\frac{136000}{9.81}$
= 13863.40 kg/m 3
(iii) Specific volume = $\frac{1}{\rho}$
= $\frac{1}{13863.4}$
= 72.13 × 10⁻⁶ m³/kg

(iv) Specific gravity = $\frac{Desity \ of \ mercury}{Density \ of \ water} = \frac{13863.4}{1000} = 13.86$

THANKYOU