Magnetohydrodynamic Power Generation

Learning Objectives

 The operating principle of Magnetohydrodynamic power generation
Indicate the different modes in which it can be implemented

3) Indicate the challenges posed by this technology

Thermal power plant

Combined cycle power plant

Plasma

- Fourth state of matter
- Ionized Gas
- Low ionization energy elements can be used
- Cs, K have relatively low ionization energy

Electrons and ions deflected in opposite directions, generating voltage

Cs and K added to the gas. The temperature should be high enough to ionize these. Called Seeding

Combined cycle power plant

Movement of electrons and ions will depend on charge as well as mass

Segmented Faraday Generator

Conclusions

- 1) Magnetohydrodynamic power generation, enables generation of power from hot gases, without moving parts
- 2) It requires high temperatures
- 3) Usually combined with a regular thermal plant, but appears at the top end of the stream
- 4) Can have toxic implications based on implementation strategy

Course Summary:

- 1) Usage of energy around the world Nation, per capita, by sector
- 2) Impact on Environment
- 3) Solar Energy
- 4) Wind
- 5) OTEC
- 6) Geothermal
- 7) Biomass
- 8) Battery
- 9) Fuel cells
- 10)Supercapacitors
- 11)Flywheels
- 12)Magnetohydrodynamic power generation