Insertion Sort

By: Dr. Surjeet Kumar

Dept. of Computer Application
Source: “Introduction to Algorithms” PHI 34 Editi

by Thomas H. Cormen & Others.

INSERTION-SORT (A) cost times

1 for ;j = 2to A.length C1 n
3 // Insert A[j] into the sorted
sequence A[l..j — 1]. 0 n—1
4 = F—1 Cq n—1
5 while i > 0 and A[i] > key Cs D maly
6 Ali + 1] = A[i] g T (el
7 i =1 — 1 C~ Z?=2(fj = 1)
8 Ali + 1] = key Cg n—1

The running time of the algorithm is the sum of running times for each state
ment executed; a statement that takes ¢; steps to execute and executes n times wi
contribute ¢;n to the total running time.® To compute 7'(n), the running time ¢
INSERTION-SORT on an input of n values, we sum the products of the cost an
times columns, obtaining

n n
T(n) = cin+cn—D+can—1+csy t;+cs» (5 —1)
j=2 j=2

Fl
+er Y (i — 1) +cs(n—1).
Jj=2

ven for inputs of a given size, an algorithm’s running time may depend on
ch input of that size is given. For example, i INSERTION-SORT, the best
: ocurs if the array is already sorted. Foreach j = 2,3,...,n, we then find
Ali] < key in line 5 when 7 has its initial value of j — 1. Thus#; = 1 for
- 2,3,...,n, and the best-case running time 18

) = en+en=-D+em=1+esn=1)+cgn-1)
= (cpteteatostogn—(cy+04+05+0s).

can express this running time as an + b for constants a and b that depend on
statement costs ¢;; it 1s thus a linear function of n. |
 the array is in reverse sorted order—that is, in decreasing order—the worst
> results, We must compare each element A[;] with each element in the entire
ed subarray A[1..j —1],andso¢t; = j for j = 2,3,...,n. Noting that

ind that in the worst case, the running time of INSERTION-SORT is

1
= cin+ca(n—1)+ca(n—1) + cs (n(n;—) - 1)

1 e (n(nz-— 1)) s (n(nz— 1)) 4 il — 15

C C C C C C
— —§+§+§)J12+(61+C2+C4+25—;“§1+C'8)f?

— (€2 +c4 +c5 +c3) .

N express this worst-case running time as an? + bn 4+ ¢ for constants a, b,
that again depend on the statement costs ¢;; it is thus a quadratic Junction

vically, as in insertion sort, the running time of an algorithm is fixed for a
input.

-case and average-case analysis

nalysis of insertion sort, we looked at both the best case, in which the input
/as already sorted, and the worst case, in which the input array was reverse

- worst-case running time of an algorithm gives us an upper bound on the
1ing time for any input. Knowing it provides a guarantee that the algorithm
‘never take any longer. We need not make some educated guess about the
1ing time and hope that it never gets much worse.

some algorithms, the worst case occurs fairly often. For example, in search-
a database for a particular piece of information, the searching algorithm’s
st case will often occur when the information is not present in the database.
ome applications, searches for absent information may be frequent.

* The “average case” is often roughly as bad as the worst case. Suppose that v
randomly choose n numbers and apply insertion sort. How long does it take
determine where in subarray A[l..j — 1] to insert element A[;]? On averag
half the elements in A[1..j — 1] are less than A[j], and half the elements a
greater. On average, therefore, we check half of the subarray A[l .. — 1], a
so #; is about j/2. The resulting average-case running time turns out to be
quadratic function of the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the average-case running tin
of an algorithm; we shall see the technique of probabilistic analysis applied
various algorithms.

The scope of average-case analysis
limited, because it may not be apparent what constitutes an “average” input f
a particular problem. Often, we shall assume that all inputs of a given size a
equally likely. In practice, this assumption may be violated, but we can sometim
use a randomized algorithm, which makes random choices, to allow a probabilist
analysis and yield an expected running time.

