VECTORS

Any ordered n -tuple of numbers is called an n - vector. By an ordered n -tuple, we mean a set consisting of n numbers in which the place of each number is fixed. If $x_1, x_2, ..., x_n$ be any n numbers then the ordered n - tuple $X = (x_1, x_2, ..., x_n)$ is called an n - vector. Thus the coordinates of a point in space can be represented by a 3-vector (x, y, z) Similarly (1, 0, 2, -1) and (2, 7, 5, -3) are 4-vectors. The n numbers $x_1, x_2, ..., x_n$ are called the components of the n - vector $X = (x_1, x_2, ..., x_n)$. A vector may be written either as a row vector or as a column vector. If A is a matrix of order $m \times n$, then each row of A will be an n - vector and each column of A will be an m - vector. A vector whose components are all zero is called a zero vector and is denoted by O. Thus O= (0, 0, 0, ..., 0).

Let $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n)$ be two vectors.

Then X = Y if and only if their corresponding components are equal.

i.e., if
$$x_i = y_i$$
, for $i = 1, 2 \dots n$

 $X + Y = (x_1 + y_1, x_2 + y_2, \dots x_n + y_n)$

If k be a scalar, then $kX = (kx_1, kx_2, \dots kx_n)$

n, n - vectors $e_1 = [1, 0, 0, \dots 0], e_2[0, 1, 0, 0, \dots, 0] \dots, e_n = [0, 0, \dots, 1]$ are called fundamental unit vectors or elementary vectors.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE OF VECTORS

A set of r n-vectors $X_1, X_2, ..., X_r$ is said to be *linearly dependen* if there exit r scalars (numbers) $k_1, k_2, ..., k_r$, not all zero, such that.

 $k_1X_1 + k_2X_2 + \dots + k_rX_r = 0$

A set of r n – vectors X_1 , $X_{2, \dots}$, X_r , is said to be *linearly independent* if every relation of the type

$$k_1X_1 + k_2X_2 + \dots + k_rX_r = 0$$
 implies $k_1 = k_2 = \dots = k_r = 0$

To test the linear dependence of r given vectors, write them as row vectors. Add suitable multiples of one vector to the others so that the resulting (r-1) vectors have their first component zero. Choose anyone of these (r-1) vectors and add its multiples to the others so that the resulting (r-2) vectors have their second component zero. In this way continue, reducing the successive components to zero. If the final reduction gives a vector all of whose components are zero then the original vectors are linearly dependent. However, if the final reduction gives a vector all of whose components are not zero, then the original vectors are linearly independent.

Note I. If a set of vectors is linearly dependent, then at least one member of the set can be expressed as linear combination of the remaining vectors.

Note 2. The m, m –ddimensional vectors $X_{1}, X_{2}, X_{3}, ..., X_{m}$ are linearly dependent if the rank of the matrix $[X_{1}, X_{2}, X_{3}, ..., X_{m}]$ with the given vectors as columns is less than m.

Procedure to test linear dependence of vectors

Step 1.Construct coefficient matrix A with elements of given vectors as columns.

Step 2. Find $\rho(A)$.

Step 3. If $\rho(A) = \text{no. of vectors then given set of vectors is linearly independent and if <math>\rho(A) < \text{no. of vectors then given set of vectors is linearly dependent.}$

ANY NON-EMPTY SUBSET OF A LINEARLY INDEPENDENT SET OF VECTORS IS LINEARLY INDEPENDENT

Let

$$S_1 = (X_1, X_2, X_3, \dots, X_n)$$

$$S_2 = (X_1, X_2, X_3, \dots, X_r)$$
 where $r < n$

Clearly, S_2 is a subset of S_1 ,

Let
$$a_1X_1 + a_2X_2 + a_3X_3 + \dots + a_rX_r = 0$$
 ...(1)

$$\Rightarrow \qquad a_1 X_1 + a_2 X_2 + a_3 X_3 + \dots + a_r X_r + 0, X_{r+1} + \dots + 0, X_n = 0 \qquad \dots (2)$$

But S_1 is linearly independent

:. From (2),
$$a_1 = a_2 = a_3 = \dots = a_r = 0$$

Hence by eqn. (1), it is true only if all a's are zero

 \therefore Set S_2 is also linearly independent.

ANY SUPER SET OF A LINEARLY DEPENDENT SET OF VECTORS IS LINEARLY DEPENDENT

Let the set $(X_1, X_2, X_3, ..., X_r)$ be linearly dependent set, therefore $\exists r$ scalars $a_1, a_2, a_3, ..., a_r$ not all zero such that

$$a_1 X_1 + a_2 X_2 + a_2 X_2 + \dots + a_r X_r = 0$$

$$\Rightarrow \quad a_1 X_1 + a_2 X_2 + a_2 X_2 + \dots + a_r X_r + 0, \ X_{r+1} + \dots + 0 \ X_n = 0$$

where all a's are not zero

Hence by definition, the set $[X_1, X_2, ..., X_n]$ is linearly dependent.

ILLUSTRATIVE EXAMPLES

Example 1. If $X_1 = [1, 0, 0], X_2 = [0, 1, 0], X_3 = [0, 0, 1], find$

(i) $X_1 + X_2 + X_3$ (ii) $2X_1 + 3x_2 - X_3$.

Sol. (i)
$$X_1 + X_2 + X_3 = [1, 0, 0] + [0, 1, 0] + [0, 0, 1] = [1, 1, 1]$$

(ii) $2X_2 + 3X_2 - X_3 = 2[1, 0, 0] + 3[0, 1, 0] - [0, 0, 1]$
 $= [2, 0, 0] + [0, 3, 0] - [0, 0, 1] = [2, 3, -1].$

Example 2. Show that the vectors $X_1 = [1, 2, 3], X_2 = [2, -2, 0]$ form a linearly independent set

Sol. Coefficient matrix

$$A = \begin{bmatrix} 1 & 2\\ 2 & -2\\ 3 & 0 \end{bmatrix}$$

Portaging $R_{21}(-2)$, $R_{31}(-3)$

$$-\begin{bmatrix} 1 & 2 \\ 0 & -6 \\ 0 & -6 \end{bmatrix}$$

Operating $R_{32}(-1)$

$$\begin{bmatrix} 1 & 2 \\ 0 & -6 \\ 0 & 0 \end{bmatrix}$$

:.

 $\rho(A) = 2(=$ no. of vectors)

Hence the given set of vectors is linearly independent.

Example 3. Shoe that the vectors $X_1 = (1, 2, 4), X_2 = (2, -1, 3), X_3 = (0, 1, 2)$ and $X_4 = (-3, 7, 2)$ are linearly dependent and find the relation between them

Sol. Coefficient matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & -3 \\ 2 & -1 & 1 & 7 \\ 4 & 3 & 2 & 2 \end{bmatrix}$$

Operating $R_{21}(-2)$, $R_{31}(-4)$

$$\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -5 & 1 & 13 \\ 0 & -5 & 2 & 14 \end{bmatrix}$$

Operating $R_{32}(-1)$

ΓĨ	1	2	0	-3]
- () -	-5	1	13
L)	0	1	1 J

...

 $\rho(A) = 3$ (< no. of vectors)

Hence the given set of vectors is linearly dependent.

Let the relation between the vectors be

$$a_1 X_1 + a_2 X_2 + a_3 X_2 + a_4 X_4 = 0 \qquad \dots (1)$$

where a_1, a_2, a_3 and a_4 are scalars given by

$$a_1 + 2a_2 - 3a_4 = 0 \qquad \dots (2)$$

$$-5a_2 + a_3 + 13a_4 = 0 \qquad \dots (3)$$

$$a_3 + a_4 = 0$$
 ... (4)

From (4), $\frac{a_3}{1} = \frac{a_4}{-1} = k$ (say)

so that,

$$a_3 = k$$
 and $a_4 = -k$

From (3),
$$-5a_2 + k - 13k = 0 \Rightarrow a_2 = -\frac{12}{5}k$$

From (2), $a_1 - \frac{24}{5}k + 3k = 0 \Rightarrow a_1 = \frac{9}{5}k$

Substituting these values is (1), we get

$$\frac{9}{5}kX_1 - \frac{12}{6}kX_2 + kX_3 - kX_4 = 0$$

$$\Rightarrow \qquad 9X_1 - 12X_2 + 5X_3 - 5X_4 = 0 \qquad (\because k \neq 0)$$

Example 7. Find the value of λ for which the vectors $(1, -2, \lambda)$, (2, -1, 5) and $(3, -5, 7\lambda)$ are linearly dependent.

Sol. Coefficient matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -5 \\ \lambda & 5 & 7\lambda \end{bmatrix}$$

The given vectors will be linearly dependent when $\rho(A) < \text{no. of vectors } (i.e. 3)$ Now, $\rho(A) < 3$ is possible only if |A| = 0

Hence,
$$|A| = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -5 \\ \lambda & 5 & 7\lambda \end{bmatrix} = 0$$
$$\Rightarrow \quad 1(-7\lambda + 25) - 2(-14\lambda + 5\lambda) + 3(-10 + \lambda) = 0$$
$$\Rightarrow \qquad 14\lambda = 5$$
$$\Rightarrow \qquad \lambda = \frac{5}{14}$$
$$TEST YOUR KNOWLEDGE$$

1. For the vectors X = [3, -9, 12], and Y = [-4, 12, -16] show that 4X + 3Y = 0.

2. Show that the elementary unit vectors $E_1 = [1, 0, 0, ..., 0]$, $E_2 = [0, 1, 0, ..., 0]$, ..., $E_n = [0, 0, 0, ..., 1]$ are linearly independent.

- 3. (i) Show that the column vectors of $A = \begin{bmatrix} 1 & 0 & 0 \\ 6 & 2 & 1 \\ 4 & 3 & 2 \end{bmatrix}$ are linearly independent. (ii) Show that row vectors of the matrix $\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ are linearly independent.
- 4. Show that the vectors $X_1 = [a_1, b_1], X_2 = [a_2, b_2]$ are linearly dependent iff $a_1b_2 a_2b_1 = 0$.
- 5. Prove that the four vectors $X_1 = [1, 0, 0], X_2 = [0, 1, 0], X_2 = [0, 0, 1], X_4 = [1, 1, 1]$ in $V_3(c)$ from a linearly dependent set but any three of them are linearly independent.
- 6. Show that the vectors $X_1 = [2, 3, 1, -1]$, $X_2 = [2, 3, 1, -2]$, $X_3 = [4, 6, 2, 1]$ are linearly dependent. Express one of the vectors as a linear combination of the others.
- 7. Examine the linear dependence or independence of the following set of vectors:
 (i) [3, 2, 4], [1, 0, 2], [1, -1, -1]
 (ii) [2, 3, 1, -3], [2, 3, 1, -2], [4, 6, 2, -3]
 (iii) [1, 1, 0], [3, 1, 3], [5, 3, 3]
 (iv) [1, 2, 1, 2], [0, 1, 2, 1], [1, 4, 3, 2]
- 8. Show using a matrix that the set of vectors X = [1, 2, -3, 4], Y = [3, -1, 2, 1], Z = [1, -5, 8, -7] is linearly dependent. Determine a maximum subset of linearly independent vectors and express the others as a linear combination of these.
- 9. If the vectors (0, 1, a), (1, a, 0) and (a, 1, 0) are linearly dependent, then find the value of a.
- 10. Show that the vectors $x_1 = (1, -1, 1)$, $x_2 = (2, 1, 1)$, $x_3 = (3, 0, 2)$ are linearly dependent. Find the relation between them.
- 11. Examine the following vectors for linear dependence and find the relation between them, if possible:

$$X_1 = (1, 1, -1, 1), X_2 = (1, -1, -2, -1), X_3 = (3, 1, 0, 1)$$

ANSWERS

- 6. $5X_1 3X_2 X_3 = 0$
- 7. (i) linearly independent (ii) linearly dependent (iii) linearly dependent (iv) linearly independent
- 8. 2; $X_3 = -2X_1 + X_2$
- 9. $a = 0, \neq \sqrt{2}$
- 10. $x_1 + x_2 = x_3$
- 11. linearly dependent; $2X_1 + X_2 = X_3$.