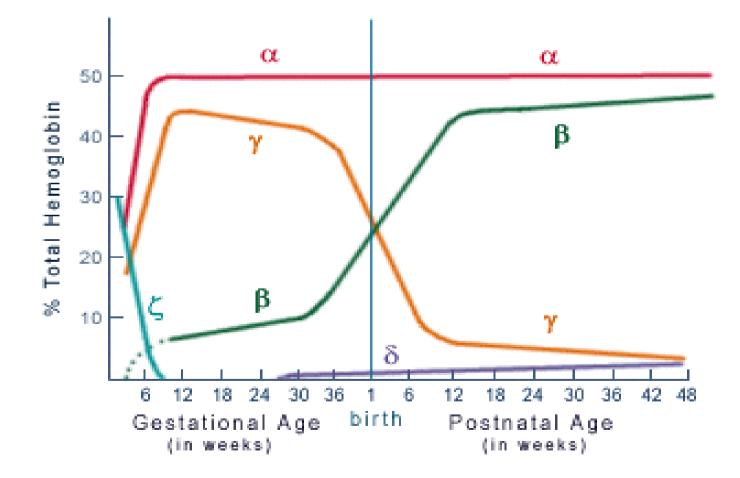
Thalassemia Its genetics and Therapy

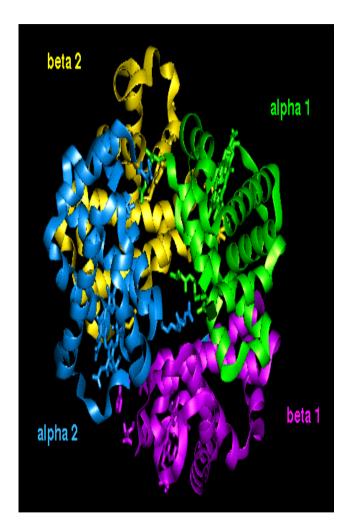
Prof Vandana Rai Department of Biotechnology V B S Purvanchal University Jaunpur

Thalassemia

- Thalassemia is inherited as an autosomal recessive trait ,hence ,both parents must be carriers to have an affected child.
- Thalassemia may arise as the result of malfunction either of a or b-globin genes ,producing either a- or b-thalassemia.
- The phenotypes are indistinguishable :hemoglobin with an imbalance of either a-or bchains precipitate, and cause erythrocytes to burst.


Thalassemia

- The thalassemia is a diverse group of genetic blood diseases characterized by absent or decreased production of normal hemoglobin, resulting in a microcytic anemia of varying degree.
- The alpha (a) thalassemias are concentrated in Southeast Asia, Malaysia, and southern China.
- The beta (b) thalassemias are seen primarily in the areas surrounding Mediterranean Sea, Africa and Southeast Asia.


Temporal Globin expression

- α globin expression is rather stable in fetal and adult life, because it is needed for both fetal and adult hemoglobin production
- β globin appears early in fetal life at low levels and rapidly increases after 30 weeks gestational age, reaching a maximum about 30 weeks postnatally
- γ globin molecule is expressed at a high level in fetal life (6 weeks) and begins to decline about 30 weeks gestational age, reaching a low level about 48 weeks postgestational age.
- $\delta \ \text{globin appears at a low level at about 30 weeks gestational age and maintains a low profile throughout life. }$

Temporal globin expression

- Thalassemia is Genetic Blood disorder.
- Commonest single gene disorder.
- Inherited in an AR manner
- Carriers are clinically normal healthy individuals.
- Moderate to severe anemia.
- Osteoporosis due to bone marrow expansion,Pneumatization of the sinuses is delayed by expanded hematopoiesis.

Thalassemia Pathogenesis

- Hemoglobin concentration reduced in all RBCs
- RBCs are
 - Pale Hypochromic
 - Small Microcytic
- Imbalance of Alpha: Beta chain globin synthesis
- Excess globin chain precipitates
- Results in-
 - 1. RBC precursor death in bone marrow
 - 2. Premature removal of circulating

RBCs

Clinical Features of Thalassemia

- Severe anemia
- Failure to develop in infants
- Growth retardation
- Hepatomegaly
- Speenomegaly
- Bone marrow expansion
- Pains in bones
- Osteoporosis due to bone marrow expansion, Pneumatization of the sinuses is delayed by expanded hematopoiesis.
- Cardiomyopathy
- Pulmonary hypertension
- Heart failure

Types of Thalassemia

- β **thal**: excess of a globins, leading to formation of a globin tetramers (a⁴) that accumulate in the erythroblast , leading to ineffective erythropoiesis. Two types of mutations, the β 0 in which no β globin chains are produced and β +, in which some β chains are produced but at a reduced rate.
- α thal : excess of b globins, leading to the formation of β globin tetramers (β^4) called hemoglobin H. Results in hemolysis, generally shortening the life span of the red cell. Hemoglobin H-Constant Spring disease is a more severe form of this hemolytic disorder. Most severe form is a thalassemia major, in which fetus produces no a globins, which is generally incompatible with life.

α -thalassemia

- In most cases of α -thalassemia, α -globin genes are entirely deleted .
- The organization of the α-globin gene cluster ,with two identical αgenes and two closely homologous pseudogenes all close together ,makes unequal crossing over comparatively frequent.
- The severity of α -thalassemia increases as more genes are deleted .
- Symptomless carriers (clinically silent carriers) usually have one deleted gene (αα/α-), the absence of two genes (αα/-- or α-/α-) produce mild anemia (alpha thalassemia trait), the anemia is severe if three genes (α-/--) are missing (hemoglobin H disease) while the disease is fatal if all four genes are deleted.
- Total deletions of the α -globin cluster are therefore more likely to be harmful than deletion of one α -globin gene.

Classification & Terminology Alpha- Thalassemia

- Silent carrier α/αα
 Normal αα/αα
 Minor -α/-α --/αα
 Hb H disease --/-α
- Barts hydrops fetalis --/--

Classification & Terminology Beta Thalassemia

 Normal 	β/β
 Minor 	β/β ⁰
	β/β+
 Intermedia 	β ⁰ /β+
 Major 	β ⁰ /β ⁰
	β+/β+

Thalassemia trait

- A symptomatic
- Healthy individual
- Carrier of the disease

β^τ/β^Ν

Thalassemia Intermedia

- Late onset > 2 Year
- Hb 7-9g%
- Transfusion may or may not

 β^T / β^T or β^T / β^N

Beta thalassemia major

- No beta chain produced (no HbA)
- Severe microcytic anemia occurs gradually in the first year of life
- Marrow expansion
- Iron overload
- Growth failure and death

Beta thalassemia major

- Transfusion
- Iron chelation
- Bone Marrow Transplantation

Untreated β thalassemia

- Major: Death in first or second decade of life
- Intermedia: Usually normal life span
- Minor/Minima: Normal life span

β -thalassemia

- The pathology of β -thalassemia is far more complex than that of the α -thalassemias. Major deletions are only minor cause .
- The genetic alteration which lead to β-thalassemia fall into three classes:

 eta^+ -thalassemia eta^0 -thalassemia

 $\delta\beta$ -thalassemia

In β^{+} thalassemia the synthesis of β -globin chain is reduced but perceptible.

In β^0 -thalassemia ,there is a complete absence of β -chain synthesis.

In $\delta\beta$ -thalassemia there is a total lack of both δ -and β -chain synthesis.

β -thalassemia mutations

- Five types of non-deletioanal mutations lead to the β -thalassemia syndrome:
 - nonsense mutation
 - missense mutation
 - frame shift mutation
 - **RNA** processing mutation
 - transcriptional mutation

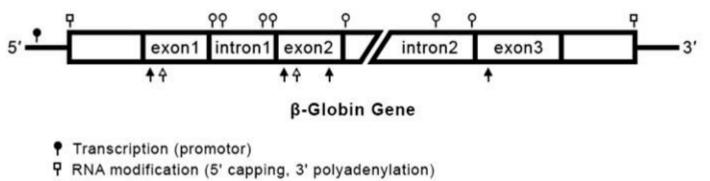
β^0 -thalassemia mutations


(1) Nonsense mutations, resulting from nucleotide substitution, lead to premature termination of b-globin mRNA translation , phenotypically causes b⁰-thalassemia , with complete absence of effective synthesis . Codon 39 is changed from CAG , encoding glutamine , to UAG, a stop codon.

(2) Frameshift mutations always appear in regions with direct sequence repeats –the mRNAs transcribed from these regions are highly unstable and mutations lead to altered amino-acid sequences ,premature termination of protein synthesis and causes b⁰ thalassemia. A rare mutation is found in 2% of the individuals ,frameshift at codon 6, resulted in a truncated protein.

Demographics: Thalassemia

Found most frequently in the Mediterranean, Africa, Western and Southeast Asia, India and Burma.


Distribution parallels that of *Plasmodium falciparum*

http://www.shodhsangam.rkdf.ac.in/papers/HEMATOLOGICAL.pdf

Genetics of Thalassemia

- Autosomal Recessive Traits
- Mutational heterogeneity
- There are more than 200 different thalssemia mutations reported from all over the world

- **9** RNA splicing
- Frame-shift
- A Non-sense codon

https://www.middleeastmedicalportal.com/disorder-ofthalassemias-and-hemoglobinopathies-a-genetic-overview/

Special Cases of Thalassemia

Hb Lepore: $\delta\beta$ fusion seen in some types of $\delta\beta$ thalassemia Hb Constant Spring

- α chain with 31 additional amino acids
- --/ $\alpha^{cs}\alpha$

Hereditary persistence of fetal hemoglobin (HPFH) Thalassemia/HbS Thalassemia/HbE Thalassemia/HbD

Special Cases of Thalassemia

Hb Barts & hydrops fetalis

- Barts is a γ^4 tetramer
- Associated with --/--
- Lethal
- High concentrations are capable of sickling

Hb H

- β^4 tetramer
- Associated with --/- α thalassemia

Course and Treatment Thalassemia

- Time of presentation
 - Related to degree of severity
 - Usually in first few years of life
 - Untreated severe α thalassemia
 - --/--: Prenatal or perinatal death
 - --/- α & --/ α ^{cs} α : Normal life span with chronic hemolytic anemia

Therapy

- Blood Transfusion
- Bone marrow transplant
- Gene therapy (by Gene augmentation therapy approach)

Other therapies for Thalassemia

Other therapies for Thalassemia

- Erythropoetin
- Fetal Hb augmentation
- Antioxidant
- Vitamin D

Support therapies

- Cheation therapy
- Osteocast repacement therapy

Thalassemia Prevention

- Preventive programs in (i) public education, (ii) population screening, genetic counseling and prenatal diagnosis have been very effective in reducing the birth rate of β-thalassemia major.
- Combination of hematological and molecular techniques offers the most reliable and accurate strategy for β-thalassemia prenatal diagnosis
- Development of molecular techniques not only made it possible to offer prenatal diagnosis at an early stage of the pregnancy but they can help to resolve diagnostic problems.