Tutorial-1, B. Tech. Sem II, 5 Sep., 2022 (Introduction of Complex numbers & Analytic functions)

- 1. Find the locus of z in each of the following relations: (i)|z-5|=6, $(ii)|z+2i|\geq 1$, (iii)Re(z+2)=-1, (iv)|z-i|=|z+i|, (v)|z+3|+|z+1|=4, $(vi)1\leq |z-3|\leq 2$, (vii)|z+3|-|z+1|=1.
- 2. For which complex number following are true, justify in each (i)z = -z, (ii) $-z = z^{-1}$, (iii) $z = z^{-1}$, (iv) $z = \bar{z}$
- 3. Define an analytic function at a point and in a domain.
- 4. Prove that an analytic function of constant modulus is always constant.
- 5. Prove that Real and imaginary parts of an analytic function are harmonic.
- 6. Prove that an analytic function is always continuous but converse need not be true. Give an example.
- 7. State and prove the necessary and sufficient condition for a function f(z) = u + iv to be analytic.
- 8. Define an analytic function at a point. Illustrate such a function.
- 9. If $f(z) = \frac{(\bar{z})^2}{z}$, $z \neq 0$; f(0) = 0 then f(z) satisfies Cauchy–Riemann equations (CR) at origin.
- 10. Using Milne–Thomson method construct an analytic function f(z) = u + iv for which $2u + 3v = 13(x^2 y^2) + 2x + 3y$.
- 11. State and Prove Cauchy–Riemann equations in polar coordinate system.
- 12. Let $f(x,y) = \sqrt{(|xy|)}$, then (a) f_x , f_y do not exist at (0,0); (b) $f_x(0,0) = 1$; (c) $f_y(0,0) = 0$; (d) f is differentiable at (0,0). **Ans**: c
- 13. If function $f(z) = \left(\frac{\bar{z}}{z}\right)^2$, when $z \neq 0$, f(z) = 0 for z = 0, Then f(z) (a) satisfies C.R. equations at z = 0; (b) is not continuous at z = 0; (c) is differentiable at z = 0; (d) is analytic at z = 1 **Ans**: b
- 14. Show that $f(z) = \frac{(\bar{z})^2}{z}$, when $z \neq 0$, f(z) = 0 for z = 0, satisfies C.R. equations at z = 0; but is not differentiable at z = 0.
- 15. The harmonic conjugate of $u = x^2 y^2 + xy$ is (a) $x^2 y^2 xy$; (b) $x^2 + y^2 xy$; (c) $1/2(-x^2 + y^2) + 2xy$. (d) $2(-x^2 + y^2) + 1/2$ Ans: c

- 16. $f(z) = (|z|)^2$ is (a) continuous everywhere but nowhere differentiable; (b) continuous at z = 0 but differentiable everywhere; (c) continuous nowhere; (d) none of these. **Ans**: d
- 17. Examine the nature of the function $f(z) = \frac{x^2y^5(x+iy)}{x^4+y^{10}}$; if $z \neq 0$, otherwise 0, in a region including the origin.
- 18. Prove that the function f(z) = u + iv, where $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$; if $z \neq 0$, otherwise 0 is continuous and that Cauchy–Riemann equations are satisfied at the origin, yet f'(z) does not exist there.
- 19. If $f(z) = \frac{x^3y(y-ix)}{x^6+y^2}$; if $z \neq 0$ and f(0) = 0, show that $\frac{f(z)-f(0)}{z} \to 0$ as $z \to 0$ along any radius vector but not as $z \to 0$ in any manner.
- 20. If $f(z) = \frac{xy^2(x+iy)}{x^2+y^4}$; if $z \neq 0$ and f(0) = 0, prove that $\frac{f(z)-f(0)}{z} \to 0$ as $z \to 0$ along any radius vector but not as $z \to 0$ in any manner.
- 21. The function f(z) = z is (a) analytic at z = 0, (b) differentiable only at z = 0;(c) satisfies C.R. equations everywhere; (d) nowhere analytic. **Ans:** d
- 22. Derive the C.R. equations for an analytic function $f(r,\theta) = u(r,\theta) + iv(r,\theta)$ and deduce that $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$.
- 23. Find the point where the C.R. equations are satisfied for the function $f(z) = xy^2 + ix^2y$. In which region f'(z) exists?
- 24. $f(z) = (|z|)^2$ is (a) continuous everywhere but nowhere differentiable except at 0; (b) continuous at z = 0 but differentiable everywhere (c) continuous nowhere; (d) none of these. **Ans**: a
- 25. Prove that the function f(z) = z|z| is nowhere analytic.
- 26. If f(z) is an analytic function such that $Ref'(z) = 3x^2 4y 3y^2$ and f(1+i) = 0 then f(z) is (a) $z^3 + 6 2i$, (b) $z^3 + 2iz^2 + 6 2i$, (c) $z^3 + 2iz^2 2i$, (d) $z^3 + 2z^2 + 6 2i$ **Ans**: b **Hint:** $u_x = 3x^2 4y 3y^2 = \phi_1(x,y)(say)$, integrating partially w.r.t. y we get $u = x^3 4xy 3xy^2 + g(y)$

Therefore, $u_y = -4x - 6xy + g'(y)$

or
$$-u_y = v_x = \phi_2(x, y)(say) = 4x + 6xy - g'(y)$$

Thus $\phi_1(z,0) = 3z^2$, $\phi_2(z,0) = 4z + g'(0)$

Now, applying Milne Thomson we get

$$f(z) = \int (3z^2 + i\,4z)dz + constt.$$

- or $f(z) = z^3 + 2iz^2 + constt$. and applying f(1+i) = 0 implies Constt = 6 2i
- 27. The orthogonal trajectory of $u = e^x(x\cos y y\sin y)$ is (a) $e^x(\cos y + x\sin y) + c$; (b) $e^x x \sin y + c$; (d) $e^x(y\cos y + x\sin y) + c$. **Ans**: c
- 28. Find the locus of points in the plane satisfying the relation $|z + 5|^2 + |z 5|^2 = 75$. Ans: circle
- 29. The function $f(z) = \bar{z}$ is (a) analytic at z = 0, (b) continuous at z = 0; (c) differentiable only at z = 0; (d) analytic anywhere. **Ans**: b

- 30. If f(z) = u + iv is an analytic function and $u v = (x y)(x^2 + 4xy + y^2)$ then f(z) is (a) $-z^3 + c$, (b) $-iz^2 + ic$, (c) $-iz^3 + \beta$, (d) $z^3 ic$, **Ans**: c
- 31. If f(z) = u + iv, is an analytic function of z and $u v = \frac{\cos x + \sin x e^{-y}}{2\cos x e^y e^{-y}}$; find f(z) if f(z) subject to the condition $f(\pi/2) = 0$. Ans: $1/2\{1 \cot(z/2)\}$
- 32. If $f(z) = u(r,\theta) + iv(r,\theta)$ is an analytic function and $u = -r^3 \sin 3\theta$ then construct the analytic function f(z).
- 33. If f(z) = u + iv, is analytic function of z and $u + v = \frac{2\sin 2x}{-2\cos 2x + e^{2y} e^{-2y}}$; find f(z) in terms of z. Ans: $\frac{1}{2}(1+i)\cot z + d$
- 34. Choose the correct code for matching list A and B.

\mathbf{A} (u is given)	B $(f(z) = u + iv$ is an analytic function)
p. $x^3 - 3xy^2 + 3x + 1$	(i). $\sin z + ci$
q. $y^3 - 3x^2y$	(ii) $z^3 + 3z + 1 + ci$
r. $\sin x \cosh y$	(iii). $i(z^3 + c)$

i ii iii

- (a) p r q
- (b) r p q
- (c) p q r Ans: b
- 35. if $\sin(\alpha + i\beta) = x + iy$ prove that (a) $\frac{x^2}{\cosh^2 \beta} + \frac{y^2}{\sinh^2 \beta} = 1$, (b) $\frac{x^2}{\cos^2 \alpha} \frac{y^2}{\sin^2 \alpha} = 1$.
- 36. Prove that $(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})|f(z)|^2 = 4|f'(z)|^2$ for an analytic function f(z) = u + iv.
- 37. Find the harmonic conjugate of $u=x^3-3xy^2+3x^2-3y^2+2x+1$ and corresponding analytic function f(z)=u+iv. Ans: $v=3x^2y-y^3+6xy+2y+d$, $f(z)=z^3+3z^2+2z+1+id$.
- 38. Find orthogonal trajectory of $v = e^{2x}(x\cos 2y y\sin 2y)$ Ans: $-e^{2x}(x\sin 2y + y\cos 2y) + d$

* * * * * * * * * * * * * * * * *

Tutorial-2, B. Tech. Sem II, 21 August, 2022

(Complex Integrations)

- 1. Define simply and multiply connected regions? State and prove Cauchys theorem for an analytic function? Is it true for multiply connected regions?
- 2. State and prove Cauchy integral formula for nth derivative? Is it true for multiply connected regions? If yes, give your explanation with necessary proofs.
- 3. If f(z) is analytic in a simply connected region D and a, z are two points in D, then $\int_a^z f(z)dz$ is independent of the path in D joining a and z.
- 4. Evaluate $\int_{(0,3)}^{(2,4)} \bar{z} dz$ along (a) parabola $x = 2t, y = t^2 + 3$, (b) a straight line joining (0,3) and (2,4). Find whether both values are different, if yes, justify reason why it is so?
- 5. Evaluate $\int_C \bar{z} dz$ from z = 0 to z = 4 + 2i along the curve C given by $(i)z = t^2 + it$; (ii) the line from z = 0 to z = 2i and then the line from z = 2i to z = 4 + 2i. **Ans:** (i) $10 \frac{8i}{3}$; (ii)10 8i.
- 6. If $F(a) = \oint_C \frac{z^2 + 2z 5}{z a} dz$, where C is the ellipse $(x/2)^2 + (y/3)^2 = 1$. Find the value of F(4.5).

 Ans: Zero
- 7. Evaluate $\oint_C \frac{1}{z-a} dz$, where C is any simple closed curve and z=a is (i) outside C; (ii) inside C. **Ans:** (i) 0; (ii) $2\pi i$.
- 8. Evaluate $\oint_C \frac{1}{(z-a)^n} dz$; $n \neq 1$, $n \in Z^+$, where C is any simple closed curve and z = a is inside C. **Ans:** Zero
- 9. Suppose f(z) is analytic inside and on a simple closed curve C and z = a is inside C. Prove that $\oint_C \frac{1}{z-a} dz = \oint_{C_1} \frac{1}{z-a} dz$ where C_1 is a circle center at a and totally contained in simple closed curve C.
- 10. Evaluate $\oint_C (\bar{z})^2 dz$; where C is the circle (i)|z-1|=1, (ii)|z|=1 **Ans:** $4\pi i, 0.$
- 11. Find $\oint_C \overline{z}dz$ around (a) the circle |z-2|=3, (b) the ellipse |z-3|+|z+3|=10, (c) the square with vertices 0, 2, 2i and 2+2i. **Ans:** $18\pi i$, $40\pi i$, 8i
- 12. Suppose f(z) is integrable along a curve C having finite length l and there exists a positive real number M such that $|f(z)| \leq M$ on C. Prove that $|\int_C f(z)dz| \leq Ml$. Remark: This result is helpful to evaluate the upper bound of an integral without evaluating it.
- 13. Work out the following integrals around the contour prescribed against it (i) $\oint_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z-1)(z-2)} dz$; C: |z| = 3. **Ans:** $4\pi i$.
 - (ii) $\oint_C \frac{1}{z^2+16} dz$; C: |z| = 6. **Ans:** 0

(iii)
$$\oint_C \frac{e^{5z}}{z-2i} dz$$
; C: $|z-2|+|z+2|=6$. **Ans:** $2\pi i e^{10i}$

(iv)
$$\frac{1}{2\pi i} \oint_C \frac{e^z}{z-2} dz$$
; C: $|z| = 3$. Ans: e^2

(v)
$$\oint_C \frac{\sin \pi z}{z^2 - 1} dz$$
;

- C is the rectangle with vertices 2+i, 2-i, -2+i, -2-i;
- C is the rectangle with vertices -i, 2-i, 2+i, i. **Ans:** 0, 0.

(vi)
$$\oint_C \frac{e^{\pi iz}}{z^2 - 4z + 5} dz$$
; C: $|z - 1 - 2i| = 2$. **Ans:** $\pi e^{i\pi}$

(vii)
$$\oint_C \frac{e^z + \cos z}{(z-5)(z+5i)} dz$$
; where C is the boundary of a triangle with vertices: $-1, 1, -7/2i$.

Ans:
$$\frac{2\pi i(\pi i-5)}{\pi^2+25}(2\cos\pi i-\sin\pi i)$$

Ans:
$$\frac{2\pi i(\pi i - 5)}{\pi^2 + 25} (2\cos \pi i - \sin \pi i)$$

(viii) $\oint_C \frac{\sin^6 z}{z - \pi/6} dz$; C: $|z| = 2$. Ans: $\pi i 2^{-5}$

(ix) Show that
$$\int_C \frac{e^{z^2}}{z^2(z-1-i)} dz = \pi e^{2i}$$
; where C consists of $|z| = 2$ anticlockwise and $|z| = 1$ clockwise.

(x)
$$\frac{1}{2\pi i} \oint_{C:|z|=4} \frac{e^z}{(z+2)^2} dz$$
; **Ans:** e^{-2}

14. Evaluate
$$\oint_C \frac{1}{z^2-1} dz$$
 around $z=-i+5e^{it}$. Ans: 0

15. Evaluate
$$\oint_C (z^2 + 3 + 4/z) dz$$
, C: $|z| = 4$. **Ans:** $8\pi i$

(a)
$$\int_C (z^4 + 1) dz$$
, C: Line segment from 0 to $1 + i$. **Ans:** $5\sqrt{2}$.

(b)
$$\int_C z dz$$
, C: Line segment from 0 to i. **Ans:** 1.

(c)
$$\int_C 2z dz$$
, C: Line segment from i to $2+i$. **Ans:** $4\sqrt{5}$.

(d)
$$\int_C (x^2 + iy^2) dz$$
, $C: z = e^{it}$, $-\pi/2 < t < \pi/2$. Ans: π

17. Which of the following integrals are compatible to apply the Cauchy theorem?

1.
$$\oint_C \frac{\sin z}{z+2i} dz, \quad C: |z| = 1.$$

2.
$$\oint_C \frac{\sin z}{z+2i} dz$$
, $C: |z+3i| = 1$.

3.
$$\oint_C e^{\bar{z}} dz$$
, $C : |z - 3i| = 6$.

4.
$$\oint_{|z|=b} \frac{1}{z^2+bz+1} dz$$
, $0 < b < 1$.

5.
$$\oint_{|z|=3} \frac{1}{1-e^z} dz$$
.

6.
$$\int_{0}^{1+i} z^3 dz$$
, along $y = x$.

- 1. Evaluate $\oint_{|z|=3} \frac{1}{z^3-z} dz$, **Ans:** 0
- 2. Evaluate $\oint \frac{z^2}{z-2} dz$ where C is the boundary of a triangle with vertices -1, 0 and 2i. **Ans:** 0
- 3. Evaluate the following integrals around the contour prescribed against it

(i)
$$\oint_C \frac{z+e^z}{(z+i\pi)^3} dz$$
; C: $z = 7e^{it}$, $0 \le t \le 2\pi$. **Ans:** $-\pi i$.

(ii)
$$\oint_C \frac{1}{z^3(z-2)^2} dz$$
; C: $|z-3| = 2$, **Ans:** $\frac{-3\pi i}{8}$.

(iii)
$$\oint_C \frac{z+e^z}{(z+i\pi)^3} dz$$
; C: $z = 7e^{it}$, $0 \le t \le 2\pi$. Ans: $-\pi i$.

(iv)
$$\oint_C \frac{1}{z^3(z-2)^3} dz$$
; C: $|z-1| = 3$, **Ans:** 0.

(v)
$$\frac{1}{2\pi i} \oint_{|z|=10} \frac{3z^4}{(z-6i)} dz$$
. **Ans:** 3×6^4

(vi)
$$\oint_{|z-1|=5}^{\infty} \frac{1}{z^4-1} dz$$
. **Ans:** 0.

(vii)
$$\oint_{|z-i|=3/2} \frac{1}{z^4(z+i)} dz$$
. **Ans:** $-4\pi i$.

(viii)
$$\oint_{|z-1|=3} \frac{e^z-z^2}{(z-2)^3} dz$$
. **Ans:** $2\pi i (2e^4-1)$;

(ix)
$$\oint_{|z|=2}^{|z|} \frac{\sin z}{(z-1)^2} dz$$
. **Ans:** $2\pi i \cos 1$;

(x)
$$\oint_{|z+i|=3/2} \frac{\cos z}{(z+3i)^6} dz$$
. **Ans:** 0;

(xi)
$$\oint_C \frac{3}{z^2(z+i)^2} dz$$
; C: $|z| = 5$, **Ans:** 0.

(xii)
$$\oint_{|z|=2a} \frac{e^z}{z^2+a^2} dz. \text{ Ans: } \frac{2\pi i}{a} \sin a;$$

(xiii)
$$\oint_{|z-ia|=a} \frac{e^z}{z^2+a^2} dz$$
. Ans: $\frac{e^{ia}\pi}{a}$

(xiii)
$$\oint_{|z-ia|=a} \frac{e^z}{z^2+a^2} dz. \text{ Ans: } \frac{e^{ia}\pi}{a}$$
(xiv)
$$\oint_C \frac{z+1-e^z}{z(z+3)} dz; \text{ C: } |z-i| = 2, \text{ Ans: } 0.$$

4. Evaluate $\oint_C (x^2 + iy^2) ds$; C: |z| = 2 where s is the arc length. **Ans:** $8\pi(1+i)$

Tutorial-3, B. Tech. Sem II, 5 Sept., 2022

(Laurent's Expansions)

- 1. State and prove Laurents series expansion of a function f(z).
- 2. Find Laurents series expansion about the indicated singularity for each of the following functions. Name the singularity in each case and give the region of convergence of each series.

(i). $\frac{e^{2z}}{(z-1)^3}$; z=1

Ans: $e^{2}\left[\frac{1}{(z-1)^{3}} + \frac{2}{(z-1)^{2}} + \frac{2}{(z-1)} + \frac{4}{3} + \frac{2(z-1)}{3} + \dots; z = 1 \text{ is a pole of order 3 and Series converges for all } z \neq 1.$

(ii). $(z-3)\sin\frac{1}{(z+2)}$; z=-2;

Ans: $1 - \frac{5}{z+2} - \frac{1}{6(z+2)^2} + \frac{5}{6(z+2)^3} + \frac{1}{120(z+2)^4} - \dots; z = -2$ is an essential singularity and Series converges for all $z \neq -2$.

(iii). $\frac{z-\sin z}{z^3}$; z=0;

Ans: $\frac{1}{3!} - \frac{z^2}{5!} - \frac{z^4}{7!}..; z = 0$ is a removable singularity. Series converges for all z. (iv). $\frac{z}{(z+1)(z+2)}$; z = -2;

Ans: $\frac{2}{z+2} + 1 + (z+2) + (z+2)^2 + ...; z = -2$ a simple pole and Series converges for all z = 0 in 0 < |z+2| < 1.

(v). $\frac{1}{z^2(z-3)^2}$; z=3

Ans: $\frac{1}{9(z-3)^2} - \frac{2}{27(z-3)} + \frac{1}{27} - \frac{(z-3)}{243} + \dots$; z = 3 is a pole of order 2 and Series converges for all z in 0 < |z-3| < 3.

3. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent's series valid for expansion (a). 1 < |z| < 3,

(b). |z| > 3, (c) 0 < |z+1| < 2, (d) |z| < 1,

Ans: (a). $\cdots - \frac{1}{2z^4} + \frac{1}{2z^3} - \frac{1}{2z^2} + \frac{1}{2z} - \frac{1}{6} + \frac{z}{18} - \frac{z^2}{54} + \frac{z^3}{162} - \cdots$; (b). $\frac{1}{z^2} - \frac{4}{z^3} + \frac{13}{z^4} - \frac{40}{z^5} + \cdots$; (c). $\frac{1}{2(z+1)} - \frac{1}{4} + \frac{(z+1)}{8} - \frac{1}{16}(z+1)^2 + \cdots$; (d). $\frac{1}{3} - \frac{4z}{9} + \frac{13}{27}z^2 + \cdots$

4. Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurents series valid for (a). 1 < |z| < 2; (b). |z| > 2;

(c). 0 < |z-1|(2-z) is a Late of the series with z = 1 (d). |z-1| < 1; (e). |z-1| > 1. **Ans:** (a). $1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \cdots + \frac{1}{z^2} + \frac{1}{z^2} + \cdots$; (b). $-\frac{1}{2} - \frac{3}{z^2} - \frac{7}{z^3} - \frac{15}{z^4} + \cdots$; (c). $1 - \frac{2}{z-2} - (z-2) + (z-2)^2 - (z-2)^3 + (z-2)^4 + \cdots$; (d). $-\frac{1}{2}z - \frac{3}{4}z^2 - \frac{7}{8}z^3 - \frac{15}{19}z^4 - \cdots$; (e). $-\frac{1}{(z-1)} - \frac{2}{(z-1)^2} - \frac{2}{(z-1)^3} + \cdots$;

5. Expand $f(z) = \frac{1}{z-3}$ in a Laurents series valid for (a). |z| < 3; (b). |z| > 3 **Ans:** (a). (i) $-1/3 - 1/9z - 1/27z^2 - 1/81z^3 - \cdots$; (ii) $z^{-1} + 3z^{-2} + 9z^{-3} + 27z^{-4} + \cdots$.

6. Expand $f(z) = \frac{1}{z(z-2)}$ in a Laurent's series valid for (a). 0 < |z| < 2; (b). |z| > 2

Ans: (a). $-\frac{1}{2z} - \sum_{n=0}^{\infty} \frac{z^n}{2^{n+2}}$; (b). $\sum_{n=1}^{\infty} \frac{2^{n-1}}{z^{n+1}}$;

- 7. Find Taylor's series expansion about the indicated points for each of the following functions. Give the region of convergence of each series. (i). $\frac{z}{e^z+1}$; z=0; (ii). $\frac{\sin z}{z^2+4}$; z=0 Ans: (i) $|z|<\pi$; (ii) |z|<2

Tutorial-4, B. Tech. Sem II, 10 Sep, 2022

(Singularities and Residues)

- 1. Discuss the types of each singularity for the following functions:
 - $z = \pi/4$ is a simple pole.
 - z = a is a pole of order 2.
 - $z=\pm i$ is a simple pole and $z=\infty$ is an essential singularity.
 - z = -1, -2 are simple poles.
 - $z = k\pi, k \in \mathbb{I}$ is a simple pole.
 - (vi). $\arcsin \frac{1}{z}$; $z = 1/n\pi$, $(n \in \mathbb{I}^+)$ simple pole and z = 0 an isolated essential singularity.
 - (vii). $\arctan \pi z$; $z = 1/n, (n \in \mathbb{I}^+)$ is simple pole and z = 0 isolated essential singularity.
 - z=0 is a removable singularity.
 - (viii). $\frac{z-\sin z}{z^3}$; (ix). $\frac{z+1}{z^2-2z}$; z = 0, 2 are simple poles.
 - z=-2 is a simple pole and z=1 is a pole of order 2.
 - $e^{\frac{(i\pi+2k\pi)}{4}}, \forall k=0,1,2,3,4$ each is a simple pole.
 - $z = \pm ai$ are simple poles.
 - z=0, a pole of order 2.
 - $z = i\pi$ is a simple pole.
 - z = 0 is a simple pole.
 - z = 0 is a pole of order 2.
 - z = 0 is a pole of order 3.
 - z=0 is a simple pole.
 - $\begin{array}{l} \text{(xi). } \overline{(z-1)^2(z+2)}, \\ \text{(xi). } \overline{\frac{1}{z^4+1}}; \\ \text{(xii). } \overline{\frac{ze^{iz}}{z^2+a^2}}; \\ \text{(xiii). } \overline{\frac{1-e^{2z}}{z^3}}; \\ \text{(xiv). } \overline{\frac{e^{2z}}{1+e^z}}; \\ \text{(xv). } \overline{\frac{e^{2z}}{1-e^z}}; \\ \text{(xvi). } \overline{\frac{z-\sin z}{z^5}}; \\ \text{(xvii). } \overline{\frac{1}{z^2(e^z-1)}}; \\ \text{(xviii). } \overline{\frac{\sinh z}{z^2}}; \\ \text{(xix). } \overline{\frac{(z^2+1)e^z}{(z-1)^3(z-i)}}; \end{array}$ z=1 is a pole of order 3 and z=i is a removable singularity.
- 2. Examine the nature of singularity for the following functions and find its residue:
 - **Hint:** residue is defined as coefficient of $\frac{1}{(z-z_0)}$ in Laurent's series expansion of a function f(z) about a point z_0 . Thus,
 - residue for a pole of order m is $\frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z))$
 - residue for a removable singularity=0.
 - residue for an essential singularity z_0 can be find by finding coefficient of $\frac{1}{z-z_0}$ in its Laurent's series expansion about a point z_0 .
 - z=0 is a removable singularity, Residue= 0

 - z=0 is a removable singularity, z=i is a pole of order 3. Residue $=\frac{3}{6i}$. $z=\pm ai$ are simple poles. Residues are z=0 a pole of order 3. Residue $=-\frac{1}{6}$ $z=\pm ai$ are simple poles. Residues are $=\frac{e^{-a}}{2}$ and $=\frac{e^a}{2}$. z=0 a pole of order 3. Residue $=-\frac{1}{6}$
- 3. Using Residue theorem evaluate the following integrals:
 - Ans: $\frac{2\pi}{\sqrt{3}}$.
 - Ans:
 - Ans: $\frac{\pi}{24}$.
 - Using Residue theorem (i). $\int_{0}^{2\pi} \frac{1}{2 + \cos \theta} d\theta$, (ii). $\int_{0}^{2\pi} \frac{1}{1 2a \cos \theta + a^{2}} d\theta$, a > 1 (iii). $\int_{0}^{\pi} \frac{1 + 2 \cos \theta}{5 + 3 \cos \theta} d\theta$, (iv). $\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4 \cos \theta} d\theta$, (v). $\int_{0}^{2\pi} \frac{\cos^{2} 3\theta}{5 4 \cos 2\theta} d\theta$, Ans: $\frac{\pi}{6}$
 - Ans: $\frac{3\pi}{8}$